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A Framework for Testing Concurrent Programs

Mathias Guenter Ricken

Abstract

This study proposes a new framework that can effectively apply unit testing to

concurrent programs, which are difficult to develop and debug. Test-driven devel-

opment, a practice enabling developers to detect bugs early by incorporating unit

testing into the development process, has become wide-spread, but it has only been

effective for programs with a single thread of control. The order of operations in

different threads is essentially non-deterministic, making it more complicated to

reason about program properties in concurrent programs than in single-threaded

programs. Because hardware, operating systems, and compiler optimizations influ-

ence the order in which operations in different threads are executed, debugging is

problematic since a problem often cannot be reproduced on other machines. Multi-

core processors, which have replaced older single-core designs, have exacerbated

these problems because they demand the use of concurrency if programs are to ben-

efit from new processors.

The existing tools for unit testing programs are either flawed or too costly.

JUnit, for instance, assumes that programs are single-threaded and therefore does

not work for concurrent programs; ConTest and rstest predate the revised Java

memory model and make incorrect assumptions about the operations that affect

synchronization. Approaches such as model checking or comprehensive schedule-



based execution are too costly to be used frequently. All of these problems prevent

software developers from adopting the current tools on a large scale.

The proposed framework (i) improves JUnit to recognize errors in all threads, a

necessary development without which all other improvements are futile, (ii) places

some restrictions on the programs to facilitate automatic testing, (iii) provides tools

that reduce programmer mistakes, and (iv) re-runs the unit tests with randomized

schedules to simulate the execution under different conditions and on different ma-

chines, increasing the probability that errors are detected.

The improvements and restrictions, shown not to seriously impede program-

mers, reliably detect problems that the original JUnit missed. The execution with

randomized schedules reveals problems that rarely occur under normal conditions.

With an effective testing tool for concurrent programs, developers can test pro-

grams more reliably and decrease the number of errors in spite of the proliferation

of concurrency demanded by modern processors.
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Chapter 1

Introduction

In test-driven development, tests are created for a unit of code before the code itself

is written, and all tests must succeed before a new revision can be submitted to the

shared repository, facilitating the early detection and repair of program defects [15].

Unit tests also provide a safe foundation for refactoring the program, prevent bugs

from reappearing, and can serve as documentation. The test-driven approach to

software development is gaining popularity both in computer science education [15]

and industrial practice [36, 5].

Unfortunately, unit testing is much less effective for programs with multiple

threads of control than for sequential programs. The importance of concurrent pro-

gramming, however, is rapidly growing as multi-core processors replace older single

core designs, and the primary way of increasing the speed of computation is not

achieved by higher CPU clock frequencies but by executing several computations in

parallel. Unless there is a breakthrough in processor design or language implemen-

tation technology, writing and testing concurrent code will become a skill that all

programmers must master.

Furthermore, multi-threading not only occurs when trying to utilize multi-core

CPUs. Graphical user interface (GUI) frameworks like AWT, Swing, and SWT ac-

cess components and react to user input in a separate event thread; therefore, GUI

applications written using these frameworks already involve multi-threading.
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Developers of large Java applications like DrJava [31] have identified two obsta-

cles to applying test-driven development to concurrent programs: (i) the standard

unit testing frameworks make it easy to write bad tests, and (ii) thread scheduling

is non-deterministic and machine-specific, implying that the outcome of a test can

change from one run to the next [35].

Test-driven design increases programmer confidence [40], which is especially im-

portant in introductory programming courses. The fact that tests with failed asser-

tions may succeed is particularly troubling, because it could give students a false

sense of security. It is therefore crucial to identify how concurrent unit tests may

report false successes and what can be done to address this issue.

1.1 Motivation

This work was motivated by the problems the programmers of DrJava [31] face dur-

ing the development of such a large program with many threads of control. The

goal was to provide a set of tools that help developers write better concurrent soft-

ware by assisting them in writing simpler, better unit tests that can be executed

under different schedules. The framework should not remain a theoretical exercise

but be of immediate use to programmers.

1.1.1 Thesis Statement

The previous sections highlighted some of the difficulties of developing and testing

concurrent programs.
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I claim that concurrent programming is difficult and not well supported by to-

day’s tools. This framework simplifies the task of developing and debugging concur-

rent programs.

1.2 Review of Prior Work

The following sections discuss existing (i) frameworks for unit testing, (ii) attempts

to test programs under different schedules, (iii) tools for logging, and (iv) invariant

checking frameworks.

1.2.1 Review of Unit Testing Frameworks

The two most widely used unit testing frameworks for Java are JUnit [18] and

TestNG [50]. While TestNG provides some features that JUnit does not offer, such

as dependent and data-driven tests, neither of the two frameworks includes any ad-

ditional support for addressing the problems posed by concurrency.

Listing 1.1 shows a simple unit test using JUnit 3.8.2 that tests the Square.get

method, provided in listing 1.2. The unit test shows a typical list of assertions for

this kind of method: A couple of positive integers, a positive non-integral number,

and a negative number are used as inputs to the function.

The expected output of each function call is given as first argument to

assertEquals, the actual result of the function call as second argument, and since

this test has to work with inexact floating-point arithmetic, the acceptable devia-

tion from the expected value is given as third argument.

Together with the Square class shown in listing 1.2, the unit test will pass since

all assertions are met. If, however, an incorrect implementation of squaring is used,
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1import junit.framework.TestCase;

2public class SquareTest extends TestCase {

3public void testSquare () {

4// parameters are: expected value , actual value

5// and acceptable deviation (delta)

6assertEquals (4.0, Square.get (2), 0.001);

7assertEquals (9.0, Square.get (3), 0.001);

8assertEquals (6.25, Square.get (2.5), 0.001);

9assertEquals (16.0, Square.get(-4), 0.001);

10}

11}

Listing 1.1: A Simple Unit Test

1public class Square {

2public static double get(double x) {

3return x*x;

4}

5}

Listing 1.2: A Simple Class to Test

like the one shown in listing 1.3, one or more assertions, and the unit test as a

whole, will fail. In the particular example in listing 1.3, the function works cor-

rectly for integral input values only, and the assertion expecting a result of 6.25

for the input value 2.5 will fail.

This is only a simple demonstration of unit testing and perhaps seems unnec-

essary. The experience with production programming for DrJava [31], however, has

shown that unit testing simple methods is an invaluable tool for ensuring that more

complicated, composed methods function correctly.

JUnit 3.8.2 and older versions impose some restrictions on the developer: All

methods to be run as unit tests have to be public void and their names have to

begin with test. The class containing the methods also has to be a subclass of

junit.framework.Test. TestNG and JUnit since version 4.0 freed the developer
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1public class Square {

2public static double get(double x) {

3// note: this only works for integral values of x!

4return (int)(x*x);

5}

6}

Listing 1.3: A Flawed Class to Test

1import static org.junit.Assert.assertEquals;

2import org.junit.Test;

3public class SquareTest4 { // no need to subclass

4@Test // annotation to mark test methods

5public void doSquare () { // test prefix not required

6assertEquals (4.0, Square.get (2), 0.001);

7assertEquals (9.0, Square.get (3), 0.001);

8assertEquals (6.25, Square.get (2.5), 0.001);

9assertEquals (16.0, Square.get(-4), 0.001);

10}

11}

Listing 1.4: A Unit Test Using JUnit 4.2

of these limitations by using Java annotations to mark test methods. The disad-

vantage of this approach is lost compatibility with Java versions prior to 5.0. We

have provided improved versions of JUnit 3.8.2 and 4.2, so programmers using Java

1.4 or older can still benefit from this work, while programmers using Java 5.0 or

newer may claim all the advantages provided by JUnit 4.2. Listing 1.4 shows the

same unit test from listing 1.1 written using JUnit 4.2.

Recently, both JUnit and TestNG gained the ability to run multiple tests,

or multiple instances of the same test, in parallel. The libraries jconch [11] and

parallel-junit [21] add this feature to older versions of JUnit. Running tests in par-

allel can shorten the testing time on multi-core machines and in some cases reveal

bugs that only occur during concurrent execution. These parallel extensions, how-
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1import junit.framework.TestCase;

2
3public class TestInOther extends TestCase {

4public void testException () {

5new Thread(new Runnable () {

6public void run() {

7// should cause failure but does not

8throw new RuntimeException ();

9}

10}).start();

11}

12}

Listing 1.5: Uncaught exception in a thread other than the main thread

ever, still ignore the fundamental flaws of JUnit and TestNG in detecting errors in

multi-threaded code, such as uncaught exceptions in spawned threads.

When a Java program throws an exception, the Java Virtual Machine (JVM)

unwinds the stack of the thread in which the exception was thrown until a suit-

able catch block is found. If no such catch block exists and the stack unwinds com-

pletely, the thread is terminated. Unit testing frameworks for Java employ a catch

(Throwable t) block to detect uncaught exceptions in the main test thread and re-

port failure. Since test assertions in these frameworks are implemented using excep-

tions, our discussion of uncaught exceptions also covers failed assertions.

This catch block only applies to the test’s main thread. Since Java threads by

default do not have uncaught exception handlers installed, exceptions thrown in

other threads are ignored. Listing 1.5 contains a JUnit 3.8.2 test case that demon-

strates that uncaught exceptions in threads other than the main thread are ignored.

Concurrency is ubiquitous in Java programs because multiple threads are re-

quired to support responsive user interfaces. Nearly all non-trivial applications

with a GUI (graphical user interface) involve multi-threading. GUI frameworks
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like AWT, Swing, and SWT rely on an event-handling thread to process all GUI

input events and to access and update GUI components. The contracts for most

AWT, Swing, and SWT methods stipulate that the method must be executed in

the event-handling thread. Hence, unit tests that manipulate GUI components

(e.g., creating and modifying Swing documents) must run some code in the event-

handling thread. In fact, essentially all non-trivial method calls on these objects

must run in the event thread. If a call on a GUI component method in the event

thread is erroneous, the method may throw an exception indicating an error, but

JUnit completely ignores this exception and reports success as long as no exceptions

are thrown in the main thread. Similarly, a JUnit test may attach a listener to a

GUI component (e.g., add a DocumentListener to a Document) to perform tests

whenever the listener is fired. Even when such a listener explicitly calls the fail

method, JUnit will not report failure because the exception generated by the call is

not thrown in the main thread. (The listener is executed as a postlude to calling

a method in the corresponding GUI component, which must be done in the event

thread.)

Listing 1.5 exhibits another flaw, one that can also lead to a successful test,

even though an uncaught exception is thrown: There is no guarantee that the child

thread will reach the point of failure before the main thread has finished and the

test ends. This situation is depicted in Figure 1.1.

A correctly written test ensures that all child threads have terminated be-

fore the test ends, guaranteeing that the test is aware of any uncaught exceptions

thrown in child threads before the test result is determined. Java’s Thread.join

method can be used to suspend the test’s main thread until a spawned child thread

has finished executing. Figure 1.2 displays the behavior of a correctly written test.
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Figure 1.1 : Child thread CT outlives test’s main thread MT

Figure 1.2 : Main thread MT joins with child thread CT

The source code for such a test can be found in Listing 1.6. Existing frameworks do

not attempt to ensure that child threads terminate before the test finishes.

Even if a framework ensure that all child threads have terminated at the time

the test ends, the framework still ignores the common problem that a test fortu-

itously succeeds even though it did nothing to enforce that the main thread finishes

last. A test exhibiting this behavior is depicted in Figure 1.3. Unit testing frame-

works should ensure that all threads were in fact joined and did not just terminate

due to happenstance.
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1import junit.framework.TestCase;

2
3public class MainJoinsChild extends TestCase {

4public void testException () {

5Thread child = new Thread(new Runnable () {

6public void run() {

7// exception detected with ConcJUnit

8throw new RuntimeException ();

9}

10});

11child.start();

12while(child.isAlive ()) {

13try {

14child.join(); // wait until child done

15}

16catch(InterruptedException ie) {

17// interrupted while waiting

18// child may not be done yet

19}

20}

21}

22}

Listing 1.6: Main thread joins with child thread, Exception in Child Thread
Detected

Figure 1.3 : Child thread CT ends before main thread MT, but without join



10

1.2.2 Review of Schedule-Aware Testing Projects

Even when the unit testing frameworks discussed in the previous section are mod-

ified to detect uncaught exceptions in all threads; detect child threads that out-

live the test’s main thread; and detect threads that ended on time but were not

joined, the frameworks will not detect all of those problems that could occur; only

the problems that actually occurred in the chosen schedule are found.

Even if the test suite passes unit testing without failures or warnings, it is

still possible that the unit tests fails during the next run. This is due to the non-

deterministic nature of thread scheduling.

Conventional unit testing assumes the program behavior is deterministic, a

property that is lost for concurrent programs. The ordering of competing accesses

to shared data is non-deterministic – even when those accesses are synchronized.

The Java Memory Model [46] does not even guarantee sequential consistency for

programs with data races, that is, the Java Memory Model does not ensure that the

program execution corresponds to a serial interleaving of its threads unless the pro-

gram is free of data races. The simplest strategy for avoiding data races in Java is

to mark all shared variables as final or volatile. Both dynamic and static data race

detectors have been developed for Java [12, 27], but this is still an active area of

research.

Since concurrent program execution is non-deterministic, a unit testing frame-

work should ideally run each test under all possible schedules. Unit testing com-

bined with model checking can achieve this [49]: Unit tests are embedded into stub

programs and then run using Java PathFinder (JPF) [54], which explores all possible

schedules of the program.
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The problem of executing all schedules is intractable for large programs; how-

ever, there are several mitigating factors that reduce the impact of exploring all

possible schedules.

• Unit tests are written to be non-interactive, so it is not as crucial to provide

results immediately as it is with programs that undergo acceptance testing.

This allows unit tests to be run unattended over night. While running tests

over night does not reduce the number of schedules, this possibility increases

the developers’ tolerance to delays that a large number of schedules creates.

• Most importantly, proponents of a model checking approach claim that unit

tests are often much smaller than entire applications, resulting in a significant

drop of possible schedules [49].

The second claim is false; unit tests are not “in general very short”. In the ex-

perience of developers of DrJava [31], unit tests use and test program parts of any

scale, not just small portions. The code in the test methods themselves may be

short, but many tests exercise major subsystems, and some tests even execute the

entire program, resulting in an enormous state space that needs to be explored.

By requiring a certain locking discipline that governs the way shared data is

accessed, the number of schedules that need to be explored can further be reduced:

• If each shared variable is protected by at least one lock when accessed, then

it is sufficient to test all interleavings of critical blocks between accesses to

shared variables, acquiring or releasing locks, and other actions that influence

concurrent behavior [6]. Adherence to this so-called mutual exclusion locking

discipline can be verified by running a lockset algorithm in parallel [37].
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Unfortunately, even when considering just critical blocks, the number of possi-

ble schedules increases exponentially with the size of the program and the number

of threads. To simplify the calculation, let us assume that all threads contain the

same number of critical blocks, and that they do not interact with each other. We

also simplify the model by assuming that the scheduler does not have to be fair and

is free to schedule the threads in any order. On an actual system, the scheduler is

more constrained and the calculation more complex.

Then let t be the number of threads running concurrently, and b be the num-

ber of critical blocks per thread. The number of possible schedules N can then be

calculated as a product of b-combinations. The formula for N , given in figure 1.4,

has been derived by first choosing the b critical blocks, out of the total tb critical

blocks, during which the first thread executes; there are
(
tb
b

)
different choices. Then

the b critical blocks for the second thread are chosen, out of the remaining tb − b

ones; there are
(
tb−b
b

)
ways to do that. This process continues until only b critical

blocks remain for the last thread. As a result, N = (tb)!
(b!)t

[34].

Stirling’s approximation, n! ≈
√

2πnnn

en
, demonstrates that the number of sched-

ules grows exponentially with both the number of threads t and the number of crit-

ical blocks b: The square root factor grows polynomially; in the second factor, both

the numerator and the denominator grow exponentially, but the numerator domi-

nates.

For example, if there are two threads, and each thread consists of two critical

blocks (t = 2, b = 2), then there are 4!
(2!)2

= 24
4

= 6 different schedules. If there

are three threads (t = 3, b = 2), there are already 6!
(2!)3

= 720
8

= 90 different

schedules. It becomes apparent that the execution of all schedules quickly becomes
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N =
∏t−1

x=0

(
(t−x)b

b

)
=

(
tb
b

)(
(t−1)b

b

)(
(t−2)b

b

)
. . .
(
2b
b

)(
b
b

)
= (tb)!

b!(tb−b)!
((t−1)b)!
b!(tb−2b)!

((t−2)b)!
b!(tb−3b)! . . .

(2b)!
b!b!

b!
b! 0!

The second term in the denominator of one fraction cancels out the

term in the numerator of the next fraction, resulting in the simpler term.

= (tb)!
b!

1
b!

1
b!
. . . 1

b!
1
b!

= (tb)!
(b!)t

Figure 1.4 : Formula for Number of Schedules

intractable, even if context switches are only modeled where operations can affect

other threads.

A practical alternative to exhaustively running each test under all schedules

might be to run each test under a set of randomized schedules. There are several

projects that employ randomized testing: ConTest [9] by IBM’s Verification and

Testing Technologies (STAR) group in Haifa, Israel; rstest [42] by Scott Stoller at

Stony Brook University; and CalFuzzer [38, 17] by Koushik Sen et al. at University

of California, Berkeley.

All three products perform bytecode rewriting to insert additional instructions

at all synchronization points, that is, in all the places that could affect schedul-

ing. Typically, these instructions will be calls to Thread.sleep, Thread.yield, or

Thread.setPriority. ConTest also includes a record-and-replay facility that al-

lows the schedule that was actually executed in a certain run to be recorded and

replayed again.
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rstest is similar to ConTest, but uses fewer insertion sites, resulting in faster ex-

ecutions. Furthermore, rstest claims to exhibit probabilistic completeness, meaning

there is a non-zero probability of finding every assertion violation.

CalFuzzer is a framework for developing analyses for concurrent programs and

provides callbacks when synchronization operations or memory accesses are exe-

cuted. After using an imprecise analysis of the program to discover potential prob-

lems, CalFuzzer perturbs the scheduling to reveal actual concurrency bugs.

Unfortunately, ConTest and rstest predate the Java Memory Model [46], and the

literature on CalFuzzer does not mention the Java Memory Model. The three prod-

ucts therefore make incorrect assumptions about the operations that affect synchro-

nization: They assume that programs exhibit an “as-if-serial” execution, but the

Java Memory Model only provides such a guarantee of sequential consistency in

the absence of data races, as defined according to the happens-before relation of the

Java Memory Model). Many concurrency defects introduce data races to the pro-

gram; therefore, assuming the sequential consistency of an “as-if-serial” execution is

not appropriate in practice.

Assuming sequential consistency also calls into question the usefulness of Con-

Test’s record-and-replay mechanism and rstest’s probabilistic completeness property.

It is not clear how accurately a schedule can be recorded and reproduced if the pro-

gram executes on multiple processors as opposed to being time-sliced on a single

processor. The lack of an “as-if-serial” schedule to which the actual execution with

data races can be mapped may make it impossible to replay the schedule as it hap-

pened. Furthermore, there is a general problem with adding code to a program to

record and replay its execution: The additional instructions may modify the sched-
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ule and cause the program to execute under a different schedule than it normally

would.

The probabilistic completeness property provided by rstest also relies on a se-

quentially consistent execution. At every synchronization point, rstest assumes

that there is “a non-zero probability of transferring control to each runnable

thread.” [42] Such a possibility of transferring control would allow rstest to execute

even schedules that the particular scheduler normally does not allow. In a program

with data races, for which the Java Memory Model does not guarantee sequential

consistency, there is no total order over all operations, and several operations may

appear to execute at the same time. In those cases, it is not possible to control the

order of operations, and probabilistic completeness is lost.

The availability of ConTest and rstest is also quite limited. ConTest is not freely

available from IBM, and ConTest for Java is only temporarily available as a trial

version while it is being alpha-tested. rstest is not freely available at all.

Furthermore, none of the examples used in the literature on ConTest or rstest

are available as source code. ConTest only supplied four simple experiments [9], but

they were briefly described in prose∗. rstest provides two similarly small examples,

also not available as source and only described in prose [42]. In addition to those

two examples, rstest uses Stephen Hartley’s Java version of the xtango Animation

Library [41] as third example; unfortunately, this version is not available anymore.

The fourth example rstest uses is an unspecified version of the ArgoUML applica-

tion [3], which was tested for several minutes with “with semi-random manual in-

puts” [42].

∗FundManager, an apparent semantic match of ConTest’s second example, was eventually re-

trieved [48].
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The limited availability of ConTest and rstest, as well as the lack of sample pro-

grams, makes it nearly impossible to accurately compare this work, the ConcJUnit

framework, to them. The effectiveness of Concutest will therefore be determined by

itself.

CalFuzzer is the most recent of the related works and is available from the

Berkeley website [7]. It focuses on different concurrency problems at a time,

though, such as atomicity violations, data races, or deadlocks.

CalFuzzer appears most promising, provided it conforms to the Java Memory

Model. It does not provide the kind of comprehensive testing framework that is

part of this work. Concutest includes crucial improvements to JUnit, as well as a

logging framework and an invariant checker; CalFuzzer does not.

1.2.3 Review of Execution Logging Frameworks

Unit tests often need to determine whether certain portions of code have executed.

In traditional functional programs, this can simply be done by checking the return

value. Listing 1.7 shows an example of such a method with a return value, and list-

ing 1.8 shows the unit test that invokes the method, checks the return value, and

thereby also verifies that the method has been executed.

1public class LoggingResult {

2public int computeSomething () {

3return 123;

4}

5}

Listing 1.7: Application code with a method that has a return value
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Unfortunately, checking whether a method has been executed becomes more

complicated when there is no return value. This is often the case in event-driven

systems such as the GUI frameworks AWT, Swing, and SWT, where application

code is invoked as a result of a change in the GUI. More generally, the problem of

logging the execution of code without return value frequently occurs when the com-

mand, strategy, and observer design patterns [13] are used. Swing’s Runnable in-

terface is an example of the command design pattern; the strategy design patterns

can be found in Swing in the form of the many pluggable look and feel (PLAF) UI

classes, such as TreeUI, that govern the behavior of GUI components; and the ob-

server design pattern is embodied by the many listener interfaces, such as Action

Listener.

Generally, this problem is solved by adding a flag to the application code that is

set to true when the method in question has executed. That flag is then checked in

the test code. Listing 1.9 shows a method without a return value that sets a flag to

true; the test code listing 1.10 then ascertains that the flag is indeed true, imply-

ing that the method has been executed.

1import junit.framework.TestCase;

2
3public class LoggingResultTest extends TestCase {

4public void testResult () {

5LoggingResult app = new LoggingResult ();

6int result = app.computeSomething ();

7assertEquals (123, result);

8}

9}

Listing 1.8: Test code for a method that has a return value
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1public class LoggingFlag {

2public volatile boolean hasExecuted = false;

3
4public void noResult () { // no return value

5hasExecuted = true;

6// do something

7}

8}

Listing 1.9: Application code with a method that does not have a return value, but
that uses a flag

1import junit.framework.TestCase;

2
3public class LoggingFlagTest extends TestCase {

4public void testFlag () {

5LoggingFlag app = new LoggingFlag ();

6app.noResult (); // no return value

7assertTrue(app.hasExecuted);

8}

9}

Listing 1.10: Test code for a method that does not have a return value, but that
uses a flag
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This solution is not desirable, as it introduces artifacts only necessary for the

execution of the tests into the application code. As a result, the application and its

test become tightly coupled.

More general logging frameworks, such as Oracle’s Java Logging Technology

(java.util.logging) [30] or Apache’s log4j [1], intended to produce human-

readable output, could also be used to test whether a certain piece of code has been

executed, but they suffer from the same problem of introducing tight coupling and,

due to their verbose text-based nature, would be less efficient.

To keep application code and test code decoupled, there should be no test ar-

tifacts in the application. This can be achieved using aspect-oriented program-

ming [55]. In AspectJ [51], for example, the execution of a method without return

value could be logged by writing an aspect that defines a pointcut specifying the

method that should be logged. The aspect then defines an advice to be inserted, or

woven in, before the method’s body executes. In this advice, a flag is set to true,

and that flag is later checked in the test. Listing 1.11 shows the application code

without any flags. Listing 1.12 shows the aspect that inserts the advice at the be-

ginning of the method. Listing 1.13 shows the test containing the flag.

In this AspectJ example, all test-related artifacts are found either in the aspect

or the test code, but not in the application code. This solution is elegant and gen-

eral, but it has some disadvantages as well. First, it requires the use of a different

language and a different compiler, namely AspectJ. This alone may be enough to

dissuade developers from using aspect-oriented programming for logging.

Furthermore, AspectJ is limited in what classes it can directly modify. Further-

more, to allow advice to be woven into library classes of the Java Development Kit

(JDK), AspectJ duplicates code [4, 52, 53]. This is necessary to avoid infinite recur-
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1public class LoggingAJ {

2// no flag

3public void noResult () { // no return value

4// do something

5}

6}

Listing 1.11: Application code with a method that does not have a return value
and does not use a flag (using AspectJ)

1public aspect LoggingAJAspect {

2pointcut methodToLog () :

3execution(public LoggingAJ.noResult ());

4
5before () : methodToLog () {

6// set flag

7LoggingAJTest.hasExecuted = true;

8}

9}

Listing 1.12: Aspect to insert logging code into a method that does not have a
return value and that does not use a flag (using AspectJ)

1import junit.framework.TestCase;

2
3public class LoggingAJTest extends TestCase {

4// flag in test code

5public static synchronized boolean hasExecuted = false;

6public void testAspectJ () {

7LoggingAJ app = new LoggingAJ ();

8app.noResult (); // no return value

9assertTrue(hasExecuted);

10}

11}

Listing 1.13: Test code for a method that does not have a return value and that
does not use a flag (using AspectJ)
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sion, since the advice may use the very same library classes as well. The duplica-

tion yields unparalleled generality for weaving any advice into any class, but also

brings code bloat with it that is unnecessary for the use as a logging framework.

The logging framework developed as part of Concutest, which uses Java anno-

tations and minimal bytecode rewriting, avoids these problems: It uses the Java

language and the Java compiler, and it is not necessary to keep duplicates of code.

A proposed extension of the Java language allowing subtyping for annotations,

discussed in section A and implemented in the xajavac compiler [32], allows for even

cleaner specification of the methods whose execution should be logged.

1.2.4 Review of Invariant Checking Frameworks

The proposed Java language extensions for annotation subtyping, discussed in sec-

tion A.2, can also be leveraged in the invariant checking framework provided by

Concutest.

Though Concutest can check arbitrary invariants in the form of preconditions,

its annotations are primarily concerned with concurrent programming and main-

taining a threading discipline. Just as important as testing concurrent programs is

the task of defining, documenting, and enforcing a set of rules, or threading disci-

pline, that dictate which threads must acquire what sets of locks before they may

access data.

Examples of threading discipline can easily be found, for example in the Swing

GUI libraries:

• The Javadoc documentation for Java’s TreeModel, DefaultTreeModel,

TreeNode, MutableTreeNode, and other classes related to Swing’s tree model

states that all the methods first defined in them may only be called from the
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event thread. The same applies to classes that belong to Swing’s table model,

and some methods involved in model-to-view coordinate conversion.

• In contrast, Java’s SwingUtilities.invokeAndWait method may not be

called from the event thread, since doing so would lead to an instantaneous

deadlock.

• Before making a destructive or compound operation on instances of Java’s

AbstractDocument class a read or write lock has to be acquired and, after the

operation, be released. A read lock acquired and released using the readLock

and readUnlock methods, while a write lock uses the writeLock and write

Unlock methods, respectively.

These invariants define threading discipline, and they all came just from the

Swing GUI library; applications and other libraries usually have their own disci-

plines that need to be followed.

More generally, an invariant can be any kind of proposition that must be true

when a method is entered (a precondition) or exited (a postcondition). Concutest

only supports preconditions, but other invariant checking frameworks support both.

In its simplest form, invariants can be checked using assertions. Listing 1.14

uses Java’s assert statement to check pre- and postconditions.

One of the benefits of using an assert statement is that it can be disabled in

release builds; therefore, it does not have any impact of the runtime of the appli-

cation. This absence of a detriment to program performance avoids the problem of

undesirable entanglement of application code and test code that was found to exist

with many logging solutions discussed in the previous section.
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There still are test artifacts in the application code, namely the stated pre- and

postconditions, but explicitly stating them is often even viewed as beneficial to pro-

gram quality. Doing so forms the core of the Design by Contract software engineer-

ing practice [26], the roots of which go back to Hoare’s axiomatic basis for com-

puter programming [14].

One problematic aspect of using Java’s assert statement to check invariants is

that the invariants are not inherited by methods that are overridden in subclasses.

Listing 1.15 shows a class C whose method m has the precondition that the argu-

ment a is not zero. When the method m is overridden in class D, which is a subclass

of class C, the precondition is not present anymore.

Existing invariant checking frameworks such as jContractor [20, 19], CoJava [22],

or the contract compiler by Findler et al. [10] allow the programmer to express rich

propositions as pre- and postconditions, and often postconditions may even refer-

ence the old state of an object at the time of method entry.

To a certain degree, the existing invariant checking frameworks also correct the

problem of inheriting invariants: Unless the invariants are modified for an overrid-

den method, the overridden method has to adhere to the same contract as the orig-

inal method. This is useful in object-oriented programs that make frequent use of

subclassing. Compared to using assert statements, automatically inheriting invari-

ants from methods in superclasses is a definite benefit.

However, all invariant checking frameworks that were studied nonetheless suffer

from at least one defect: They do not rely on the Java language alone, but rather

extend the language with additional constructs or place the preconditions in com-

ments, which are not checked by the Java compiler.
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1public class InvariantAssert {

2private int divisor = 0;

3public int divideAndSet(int dividend) {

4assert (divisor != 0); // precondition

5try {

6divisor = dividend / divisor;

7return divisor;

8}

9finally {

10assert (divisor != 0); // postcondition

11}

12}

13}

Listing 1.14: Using assert to check pre- and postconditions

1class C {

2public void m(int a) {

3assert (a != 0); // precondition

4// do something

5}

6}

7
8class D extends C {

9public void m(int a) {

10// no precondition here

11// do something else

12}

13}

Listing 1.15: assert statements are not inherited by methods overridden in
subclasses
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With the exception of Findler’s work [10], the frameworks also improperly syn-

thesize the invariants for overridden methods if the contracts are changed.†

For instance, all frameworks except Findler’s synthesize the precondition for an

overridden method using a disjunction. For this example, consider the m methods

in listing 1.16. In the base class C, the programmer declares x > 0 as precondition.

In the overridden method, the precondition x > 10 is added. Most frameworks

synthesize (x > 0) ∨ (x > 10) as precondition for the overridden method.

This synthesized precondition is problematic since it may violate the behavioral

subtyping condition [25]. In object-oriented systems, it should be possible to use an

overridden method in a subclass anywhere the method in the superclass was used.

More formally, that means the precondition may be made harder to fulfill, and the

postcondition may be weakened. Let pC(x) and pD(x) be the preconditions on the

methods C.m and D.m, respectively, where D extends C. Similarly, let qC(x) and

†The literature about jContractor [19] points out the problem of synthesizing correct invariants,

but jContractor does not correctly implement invariants for overridden methods either, as pointed

out by Findler [10].

1class C {

2@Pre("x > 0")

3void m(int x) { ... }

4}

5
6class D extends C {

7// this precondition should be rejected

8// "x > 0" does not imply "x > 10"

9@Pre("x > 10")

10void m(int x) { ... }

11}

Listing 1.16: Bad additional precondition in overridden method.
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qD(x) be the respective postconditions on the methods C.m and D.m. Then behav-

ioral subtyping requires:

∀x, pC(x)⇒ pD(x)

∀x, qD(x)⇒ qC(x)

If a disjunction is used for the synthesized precondition of method D.m, then the

implication is trivially fulfilled, even though the overridden method D.m cannot be

used everywhere the superclass method C.m can be used:

∀x, (x > 0)⇒ [(x > 0) ∨ (x > 10)]

even though (x > 0) 6⇒ (x > 10). Or generally,

∀x, pC(x)⇒ [pC(x) ∨ pD(x)]

This kind of invalid precondition should be rejected, and Findler’s work does so

by (1) checking the subclass precondition alone, (2) then recursively checking the

superclass precondition, and (3) finally verifying that the superclass precondition

implies the subclass precondition‡

The invariant checker that is part of Concutest does not implement postcondi-

tions, but it does implement synthesized preconditions correctly.

1.3 Organization

The following chapters will discuss the contributions of this work.

‡This is done for the values of the parameters of that particular method invocation. The tool

does not check that pC(x)⇒ pD(x) for all possible values of x.



27

Chapter 2 presents the details of ConcJUnit, the improved JUnit framework.

Adding uncaught exception handlers to all threads, ensuring that child threads

have terminated, and checking that child threads are properly joined are fundamen-

tal for effective testing of concurrent programs.

Chapter 3 describes a tool that adds delays and yields in critical places of

the program, helping to explore different schedules. As mentioned before, the er-

ratic nature of thread scheduling often causes concurrent programs to be non-

deterministic. This means that even with the improvements from chapter 2, a test

suite may pass during one run and fail the next time. Executing the tests under

different schedules increases the probability that even rare errors are found.

Writing good unit tests for concurrent programs is nonetheless difficult, even

when the unit testing framework executes programs using varying schedules. Concu-

test therefore provides additional support in the form of logging and invariant

checking.

Chapter 4 describes how Java annotations can be used to specify which meth-

ods should be logged. Placing this metadata in annotations helps separate test code

from application code.

Chapter 5 presents another use of Java annotations: Invariants can be encoded

as annotations on methods or classes and then checked at runtime. Allowing sub-

typing for Java annotations, described in the appendix in section A.2, lets develop-

ers create a powerful language of invariants.

Chapter 6 explores more general aspects of bytecode rewriting, a technique that

was used in all parts of this framework.

The conclusion in chapter 7 summarizes the contributions of this work and pro-

vides an outlook on future work.
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Chapter 2

Improvements to JUnit

Despite the proven effectiveness of current unit testing frameworks for programs

with a single thread of control, developers have found them difficult to use in mul-

tithreaded programs. Writing good unit tests for concurrent programs is hard, for

several reasons:

• Thread scheduling is non-deterministic and machine-specific, so the outcome

of a unit test may change from one run to the next.

• The non-determinism makes it hard to reproduce problems that only occur in

particular schedules, and even harder to ensure that the unit tests pass under

all possible schedules.

• Attempting to simulate a test under different schedules by adding additional

locks or wait-notify communication between the test and the framework re-

sults in unwieldy code.

As a result, a successful unit test provides only little assurance, and only a unit

test failure imparts tangible information to the developer. A failure proves that a

problem exists in the program, but a unit test success does not prove that the unit

test will always succeed. To make matters worse, the existing unit testing frame-

works do not correctly deal with concurrent programs and may completely ignore

errors that occur in threads other than the main thread. This chapter describes
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three defects in current unit testing frameworks and then introduces ConcJUnit, an

improved version of JUnit that does not share these deficiencies.

2.1 Default Exception Handler

The most serious problem of using JUnit to test concurrent programs is the lack of

reporting uncaught exceptions in auxiliary threads. A new child thread does not

have a default exception handler installed; therefore, unless a thrown exception is

caught somewhere in the program, the exception will unwind the thread’s stack,

invoke Java’s own exception handler to print a message, and then terminate the

thread. Other threads are not automatically notified of this, so an uncaught excep-

tion in an auxiliary thread will be completely unnoticed by the main thread and

JUnit, even though the same code executed in the main thread would lead to a test

failure. Because JUnit’s assertions, like assertEquals shown in listings 1.1 and 1.4,

are implemented using exceptions, failed assertions will not be noticed either.

Listings 2.1 and 2.2 illustrate this problem in greater detail: The unit tests in

both listings contain two methods, testException and testAssertion. In both

listings, testException throws an exception that is not caught anywhere, while

testAssertion makes an assertion that is guaranteed to fail. Therefore, in both

listings 2.1 and 2.2, the two test methods should produce failures. In listing 2.2,

however, an auxiliary thread throws the exception and makes the assertion, not the

main thread as in listing 2.1. JUnit is never informed of the uncaught exception or

the failed assertion and declares both test methods successful.

To remedy this problem, the modified ConcJUnit framework creates a new

thread group with an overridden ThreadGroup.uncaughtException method. The



30

1import junit.framework.TestCase;

2public class TestInMainThread extends TestCase {

3public void testException () {

4// uncaught , causes failure

5throw new RuntimeException ();

6}

7public void testAssertion () {

8// fails , causes failure

9assertTrue(false);

10}

11}

Listing 2.1: Uncaught Exception and Assertion

1import junit.framework.TestCase;

2
3public class TestInOther extends TestCase {

4public void testException () {

5new Thread(new Runnable () {

6public void run() {

7// should cause failure but does not

8throw new RuntimeException ();

9}

10}).start();

11}

12}

Listing 2.2: Uncaught Exception in an Auxiliary Thread
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framework then spawns a new thread in this thread group, executes the test in the

new thread, and waits for the test to complete. If an uncaught exception is thrown

in the test’s thread or any of its child threads, the overridden uncaughtException

method stores the exception to make it accessible to ConcJUnit. When the Conc-

JUnit framework resumes execution, it checks whether an uncaught exception has

occurred and deals with the exception appropriately, just as if it had occurred in

the main thread.

The use of a thread group is essential for two reasons:

• When a parent thread spawns a child thread, the parent’s thread group

is inherited by the child thread (unless a specific thread group is passed

to the child’s constructor; more about this below). This assigns the same

thread group to auxiliary threads as to the test’s main thread; there-

fore, uncaught exceptions in auxiliary threads also invoke the overridden

uncaughtException method, and uncaught exceptions and failed assertions

are no longer ignored.

• Before Java 5.0 introduced the setDefaultUncaughtExceptionHandler

method, using a thread group was the only way to catch exceptions in threads

other than the current thread. While the feature introduced with Java 5.0 is

easier to use, thread groups offer compatibility with older versions of Java.

Thread groups are also more robust than the new setDefaultUncaught-

ExceptionHandler method: There is only one default uncaught exception

handler, and in order to function correctly, the ConcJUnit framework would

have to prevent the program from changing it. A program that creates thread
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groups, on the other hand, is not affected because of the hierarchical nature of

thread groups.

Thread groups were introduced to the Java API to process threads and their

descendants collectively. The ConcJUnit framework uses this feature to record un-

caught exceptions in all threads that a test spawns.

There are a few problems with this approach:

1. Programmers can supply their own thread groups when creating threads,

thereby overriding the thread group installed by ConcJUnit. This is normally

unproblematic, since a thread group created in one of the test’s threads is a de-

scendant of ConcJUnit’s thread group, which is still informed about all the un-

caught exceptions it should know about. Which exceptions need to be recorded

by ConcJUnit depends on where they occur and whether the uncaughtException

method of the new thread group has been overridden:

a. If the uncaughtException method has been overridden by the programmer,

then the intent has been declared that the program should handle uncaught

exceptions itself. ConcJUnit may therefore not record these uncaught excep-

tions.

b. The only place where uncaught exceptions should be reported to ConcJUnit

is in the overridden uncaughtException method itself. Unfortunately, un-

caught exceptions thrown there do not get processed by Java at all. I believe

that this is an oversight in the Java Language Specification [43] and that the

parent thread group’s uncaughtException method should be invoked.

c. If the uncaughtException method has not been overridden, then the basic

behavior of the ThreadGroup.uncaughtException method will automatically
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call the uncaughtException method in the parent thread group, and the ex-

ceptions are correctly registered.

2. It is possible to create a new thread group that is not a descendant of the cur-

rent thread group. If the programmer deliberately creates a thread group that

does not descend from ConcJUnit’s thread group, then exceptions could go unno-

ticed by the ConcJUnit framework.

3. Uncaught exceptions thrown in the uncaughtException method of an applica-

tion’s Thread.UncaughtExceptionHandler cannot be processed, since the Java

virtual machine ignores them [45]. Again, I believe this is an oversight in the

Java Language Specification [43] and that the uncaughtException method of

the thread group should be invoked.

While the problems described in 1.b., 2. and 3. are real, the probability of ac-

cidentally ignoring uncaught exceptions is low: Most code does not use thread

groups at all (in March 2007, Koders [23], a source code search engine, found 913

matches for “ThreadGroup” in the Java source code it had scanned, compared to

49,329 matches for “Thread”), does not override the uncaughtException method

(in March 2007, Koders reported 32 method definitions as matches for “uncaught-

Exception”), and does not create thread groups that do not descend from the cur-

rent thread group. For nearly all programs, the ConcJUnit framework can report all

uncaught exceptions. Furthermore, the improved framework reports all uncaught

exceptions reported by the original framework.

It is important to understand that these improvements will not detect all un-

caught exceptions that could occur; only the uncaught exceptions thrown in the

chosen schedule are found. It is possible that the program can be executed under
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1import junit.framework.TestCase;

2public class TestInOtherThreadSleep extends TestCase {

3public void testException () {

4new Thread(new Runnable () {

5public void run() {

6// sleep for 10 seconds

7try { Thread.sleep (10*1000); }

8catch(InterruptedException ioe) { /* ignore */ }

9// uncaught , should cause failure but does not

10throw new RuntimeException ();

11}

12}).start();

13// test’s main thread exits immediately

14}

15}

Listing 2.3: Uncaught Exception in an Auxiliary Thread Reached Too Late

a different schedule and fail. Adding a default exception handler to ConcJUnit is

nonetheless a crucial step in creating a framework suitable for testing concurrent

programs.

2.2 No Living Child Threads Check

If JUnit is modified as described in section 2.1, the ConcJUnit framework is now

able to detect uncaught exceptions in auxiliary threads. Unfortunately, listing

2.2 exhibits another problem often found in tests of concurrent software: The

test does not ensure that the auxiliary threads spawned in testException and

testAssertion finish before the test ends and is declared a success. The two test

methods in listing 2.2 may or may not be successful, but the test method in list-

ing 2.3 is almost guaranteed to succeed even though it should fail: Because of the

call to Thread.sleep, the auxiliary thread is unlikely to reach its point of failure in

time.
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It is clear that this problem is caused by the test’s main thread not waiting for

auxiliary threads to finish before the test ends. A correctly written test should en-

sure this by having a Thread.join call for every thread that it spawned; therefore,

it is logical to declare as invalid a test that finishes before all of its child threads

have terminated.

To address this issue and increase the framework’s ability to detect problematic

tests, the ConcJUnit framework checks if any child threads are still running. The

framework enumerates the remaining threads in the ConcJUnit thread group and

declares the test a failure if running threads are found after the test ended. To help

the programmer fix the incorrectly written test case, still running child threads are

listed, along with their current stack traces.

Some threads are excluded from the list of threads and are allowed to outlive

the test’s main thread:

• Daemon threads are automatically shut down once all non-daemon threads of

an application have terminated. In a unit test, they continue to run, though,

because the unit test is not a stand-alone application. It is therefore reason-

able to allow daemon threads to remain active even after the test has ended.

• Some system threads, namely those part of the AWT and RMI (remote

method invocation) libraries, may be created inside the thread group, but

this happens automatically and without the programmer’s knowledge. Just

like daemon threads, they would terminate automatically once the application

finishes. For the reasons explained above, these threads are allowed to remain

active after the test has ended:

– AWT-Shutdown
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1import junit.framework.TestCase;

2public class TestInOtherThreadSleepJoin extends TestCase {

3public void testException () {

4final Thread t = new Thread(new Runnable () {

5public void run() {

6// sleep for 10 seconds

7try { Thread.sleep (10*1000); }

8catch(InterruptedException ie) { /* ignore */ }

9// uncaught , causes test to fail

10throw new RuntimeException ();

11}

12});

13t.start ();

14// main thread waits for spawned thread to finish

15try { t.join(); }

16catch(InterruptedException ie) { /* ignore */ }

17}

18}

Listing 2.4: Main Thread Waits for Auxiliary Thread to Finish

– AWT event threads, i.e. threads starting with AWT-EventQueue-

– RMI Reaper

– DestroyJavaVM

The improvements added in this section find the active child thread in listing

2.3 and declare the test a failure. Listing 2.4 shows a correctly written version of

the test: Even though the auxiliary thread sleeps for 10 seconds, the uncaught ex-

ception after the sleep is detected and causes the test to fail since the main thread

waits for the auxiliary thread to terminate.

2.3 Enforcement of Thread Joins

The check for living threads described in the previous section only emits warnings

for a faulty test whose main tread terminates before all child threads have finished.
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For experienced developers, this case should be rare. It would therefore be useful to

also detect badly written tests that happened to succeed even though they did not

enforce that the main thread finishes last. A test that relies on such a fortuitous

circumstance is depicted in figure 1.3.

A fork/join design in which each parent thread has to join with all of its child

threads can solve this problem. Figure 2.1 demonstrates this scheme: The main

threat MT spawns a child thread CT1; CT1 itself spawns another child thread CT2.

CT1 cannot terminate before CT2 has terminated, and MT cannot end before CT1

has ended. Therefore, MT cannot end before all of its ancestor threads have finished

executing.

This simple model is common in the parallel algorithms literature, but it may

be too restrictive for general-purpose Java programs. For example, it should be

permissible for the main thread to join directly with all of its ancestor threads,

whether it started them itself or not. This is illustrated in figure 2.2. Another

possibility that also ensures that all ancestor threads terminate before the test’s

main thread ends is to spawn a chain of helper threads, each guaranteed to outlive

the previous thread. The main thread then merely has to join with the last of the

helper threads. This situation is shown in figure 2.3.

The concept of a chain can be generalized into a directed acyclic graph called

“join graph”, initially just consisting of a node for the main thread. Every time a

new child thread is spawned, a new node is added to the graph, and every time a

thread A joins with another thread B, an edge from A to B is added. Such an edge

indicates that B is guaranteed to have terminated before A. Therefore, to ascertain

that all child threads have terminated before a test’s main thread ends, the frame-

work just need to verify that all nodes are reachable from the main thread’s node
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Figure 2.1 : Each parent thread joins with its child thread (MT joins with CT1, CT1
with CT2)

Figure 2.2 : Main thread joins with both child threads (MT joins with CT1, MT with
CT2)
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Figure 2.3 : Main thread joins with last thread in chain (MT joins with CT2, CT2
with CT1)

in the join graph. Note that in figure 2.1, figure 2.2, and figure 2.3 all nodes are

reachable from the main thread’s node MT. In figure 2.4, however, where no thread

joins with CT2, the node for CT2 is not reachable from MT, indicating that a “lucky”

warning should be issued.

Similar to the way ConcJUnit constructs the join graph, the framework also cre-

ates a “start graph” that records the child threads spawned by each thread: Every

time a new thread is started, an edge from the parent thread to the child thread is

added. This graph allows us to determine exactly which threads are ancestors of

the test’s main thread so ConcJUnit can ignore other threads that may have been

running but were not created by the test.

While the improvements described in the previous two sections only required

changes to the JUnit framework, detecting child threads that were not targets of a

join operation requires modifying the Java Runtime Environment (JRE). The byte-
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Figure 2.4 : CT2 not reachable in join graph (MT joins with CT1, CT2 not joined by
any thread)

code of the java.lang.Thread class needs to be changed to perform the necessary

bookkeeping at the end of the Thread.start and textttThread.join methods.

Concutest contains a tool that processes the rt.jar file (or classes.jar

file on Mac OS X) of the JRE the user has installed, generating a replace-

ment rt.jar file containing the modified java.lang.Thread class and its

helpers. During testing, this replacement rt.jar is put on Java’s boot class-

path using the -Xbootclasspath/p:rt.jar command line option. The book-

keeping is performed in a helper class ThreadGraphs with two static methods,

addThreadStarted(Thread t) and addThreadJoined(Thread t). Both meth-

ods have the current thread, as returned by the Thread.currentThread method,

as implicit argument. For each thread, ThreadGraphs maintains a set of threads

started by it and a set of threads joined by it. Together, these sets form the

start and join graphs. I chose to implement these graphs as adjacency lists using

NonBlockingHashMap and NonBlockingHashSet from the Highly Scalable Java [8]
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library. These data structures are lock-free and therefore minimize the probability

that the additional bookkeeping done by ConcJUnit changes the thread scheduling

of the test. With synchronized data structures employing locks, schedule perturba-

tions would be likely.

At the end of a test, ConcJUnit attempts to retrieve the contents of these

graphs using reflection. The library is not hard-linked against the modified

java.lang.Thread class and therefore also works without it on the boot classpath;

in that case, ConcJUnit just does not emit “lucky” warnings.

2.4 Results

To test the effectiveness and performance of ConcJUnit, I replaced JUnit with

ConcJUnit and executed the unit test suites for DrJava [31] (revision 4918) and

JFreeChart [16] (1.0.13), an open-source library to display data visually. The ex-

tensive JFreeChart tests were not concurrent, but they all passed, underscoring the

compatibility of ConcJUnit with existing code.

Of the 900 unit tests contained in the DrJava test suite, 880 tests passed with-

out any warnings. A single test emitted a “no join” warning, and 18 tests issued

“lucky” warnings regarding their join behaviors. There were no tests that failed as

a result of replacing the unit testing libraries, but one test timed out.

Upon examination of the source code, the 18 “lucky” warnings and the single

“no join” warning were all legitimate. The “no join” warning was issued during a

test that created a remote process that did not terminate during the test, causing

the thread waiting for the termination to outlive the test.
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The “lucky” warnings were emitted by tests that in fact did not join with all

the child threads they had spawned. Instead, they used a wait-notify scheme to

ensure that the child threads terminate before the tests end. In all of these cases,

the developers had taken care that there were no more lengthy operations after the

notifications, and that an uncaught exception after the call to notify was unlikely.

This practically makes the wait-notify scheme equivalent to a join. However, if ad-

ditional work were to be performed after the notification, and if one of the opera-

tions were to fail, such a test could be incorrectly declared a success.

During my examination, I did not discover any tests that ignored uncaught ex-

ceptions or failed assertions in spawned threads, but for DrJava, a mature project

built with test-driven methods, this was expected. Using ConcJUnit allowed us to

replace the handler for uncaught exceptions that was custom-built for DrJava with

the general one found in ConcJUnit. Doing this also made a test of the exception

handler redundant, eliminating one of the “lucky” warnings.

The overhead, introduced by ConcJUnit to handle uncaught exceptions in all

threads and to detect the “no join” and “lucky” conditions, was barely percepti-

ble. The total slowdown for ten runs of the entire test suite was 55.2 seconds, or 1.1

percent of the 5252.4 seconds it took to run the entire suite ten times using JUnit.

It was easy to integrate ConcJUnit into the existing DrJava project and use it

instead of the original junit.jar. I did not expect many problems, since the Dr-

Java developers had already created a much more complicated solution to deal with

multithreading and exceptions in other threads.

ConcJUnit is also available to users of DrJava. Beginning with the drjava-beta-

20100507-r5246 release, users can select four levels of concurrency support for unit

tests: (1) old JUnit, (2) ConcJUnit with exception handlers, (3) ConcJUnit with ex-
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ception handlers and “no join” warnings, or (4) full ConcJUnit with exception han-

dlers, “no join” warnings, and “lucky” warnings.

If the DrJava user wants to generate “lucky” warnings, then DrJava automati-

cally generates the modified rt.jar or classes.jar file.

It has always been possible to write concurrent unit tests, but it has been very

difficult to write them well. Despite the complicated DrJava code and extensive

unit tests, the ConcJUnit library was able to detect several flaws.

Thread Timer -0 (java.util.TimerThread) is still alive: state=

WAITING

java.lang.Object.wait(Native Method)

java.lang.Object.wait(Object.java :474)

java.util.TimerThread.mainLoop(Timer.java :483)

java.util.TimerThread.run(Timer.java :462)

Thread Wait for Interactions to Exit Thread (edu.rice.cs.util.

newjvm.AbstractMasterJVM$1) is still alive: state=RUNNABLE

java.lang.ProcessImpl.waitFor(Native Method)

edu.rice.cs.util.newjvm.AbstractMasterJVM$1.run(

AbstractMasterJVM.java :197)

Testcase: testInterpretCurrentInteractionWithIncompleteInput(edu.

rice.cs.drjava.model.repl.InteractionsModelTest): Caused

an ERROR

The test did not perform a join on all spawned threads.

Thread Thread -2 (edu.rice.cs.util.

ReaderWriterLockTest$PrinterReaderThread) is still alive:

state=TERMINATED

Testcase: testMultipleReaders(edu.rice.cs.util.

ReaderWriterLockTest): Caused an ERROR

The test did not perform a join on all spawned threads.

Listing 2.5: Concurrency Problems in DrJava Detected by Improved JUnit
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Chapter 3

Execution under Various Schedules

The previous chapter introduced an improvement to JUnit that records failed as-

sertions and uncaught exceptions in all threads, ensures that all child threads have

ended, and that those child threads were actually joined to the main thread.

Unfortunately, these checks are only performed in the schedule that happened

to execute. A problem could occur in another schedule and go undetected. It is

therefore valuable to execute programs using different schedules.

It is not necessary to consider all possible schedules at the instruction level.

If all variables that are shared among several threads are either (i) volatile, or

(ii) consistently protected by at least one lock when they are accessed, then it is

sufficient to change the schedule at the level of critical blocks, which are delimited

by accesses to shared variables or other actions that influence concurrency [6]. Such

accesses to shared variables and concurrency operations are called synchronization

points.

3.1 Synchronization Points

Synchronization points are all those operations in a program that are susceptible

to changes in the schedule, such as reads of shared variables; or that themselves

change the concurrent behavior of the program, e.g. by starting a new thread.
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The operations that affect the schedule of a Java program can be localized to a

small number of methods and bytecode opcodes, shown in table 3.1 (Thread class),

table 3.2 (Object class), table 3.3 (lock operations), table 3.4 (volatile field ac-

cesses), table 3.5 (non-volatile field accesses), and table 3.6 (array accesses). A

checkmark X in the “Enabled” columns indicates that the synchronization point

described in that row was instrumented with a random delay in the experiments

described in section 3.5.

Operation Time Description Enabled

java.lang.Thread

start() before parent thread creates a child thread

start() after parent thread creates a child thread X

run() before child thread begins to execute

exit() before thread ends

join() before current thread waits for another thread to end X

Table 3.1 : Synchronization Points in java.lang.Thread: A list of those operations
that affect the concurrent behavior of a program and that can be instrumented
using Concutest.

Operation Time Description Enabled

java.lang.Object

notify() before current thread sends notification to one thread X

notify() after current thread sends notification to one thread

notifyAll() before current thread sends notification to all threads X

notifyAll() after current thread sends notification to all threads

wait() before current thread waits for notification X

wait() after current thread has received notification

Table 3.2 : Synchronization Points in java.lang.Object: A list of those operations
that affect the concurrent behavior of a program and that can be instrumented
using Concutest.
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Operation Time Description Enabled

Opcodes: Locks

MONITORENTER before current thread attempts to acquire a lock X

MONITORENTER after current thread has acquired a lock

MONITOREXIT before current thread releases a lock X

MONITOREXIT after current thread releases a lock

Table 3.3 : Synchronization Points for Locks: A list of those operations that affect
the concurrent behavior of a program and that can be instrumented using Concu-
test.

Operation Time Description Enabled

Opcodes: Volatile Field Access

GETSTATIC before read from a volatile static field X

PUTSTATIC before write to a volatile static field X

GETFIELD before read from a volatile non-static field X

PUTFIELD before write to a volatile non-static field X

Table 3.4 : Synchronization Points for Volatile Fields: A list of those operations
that affect the concurrent behavior of a program and that can be instrumented
using Concutest.

Operation Time Description Enabled

Opcodes: Non-volatile Field Access

GETSTATIC before read from a non-volatile static field X

PUTSTATIC before write to a non-volatile static field X

GETFIELD before read from a non-volatile non-static field X

PUTFIELD before write to a non-volatile non-static field X

Table 3.5 : Synchronization Points for Non-Volatile Fields: A list of those oper-
ations that affect the concurrent behavior of a program and that can be instru-
mented using Concutest.
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Operation Time Description Enabled

Opcodes: Array Access

?ALOAD before read from an array

?ASTORE before write to an array

Table 3.6 : Synchronization Points for Arrays: A list of those operations that affect
the concurrent behavior of a program and that can be instrumented using Concu-
test.

Grouping instructions together as critical blocks significantly reduces the num-

ber of schedules. Unfortunately, that number still increases exponentially with the

number of concurrent threads and the size of the programs, and programs that go

beyond the scope of mere examples still become intractable to test comprehensively.

It is unsettling to give up the guarantee that a tested program will pass its

unit test suite under all possible schedules. The cursory tests in previous litera-

ture [9, 42] and the extensive experiments performed as part of this thesis suggest

that inserting random delays at synchronization points represents an effective alter-

native to comprehensive testing of all schedules.

3.2 Instrumentation with Random Delays

The strategy of inserting random delays at synchronization points is based on the

realization that many schedules will likely exhibit a certain concurrency problem,

and that it is therefore not necessary to comprehensively text all schedules. As dis-

cussed, the most frequent schedule often prevents a bug from being discovered, but

small changes in timing are enough to uncover the problem. Inserting a delay every

few times the program encounters a synchronization point is sufficient to force the

program into a different schedule.
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The program is then run many times, and because the synchronization points

at which the program sleeps, as well as the durations of the delays, differ from one

execution to the next, it is likely that the program explores different schedules.

The success rate of this approach varies depending on the hardware, the op-

erating system, and the nature of the bug. In the experiments described in this

chapter, a bug was always found in at least 30% of the executions, and often much

more frequently. In the case of DrJava, where the unit tests take about 10 minutes

to execute, we can expect to start noticing problems after running the test suite

for just an hour. A dedicated machine acting as continuous build server, e.g. using

the Hudson [29] continuous integration software, can improve the probability that

problems are found even more, while at the same time simplifying the operation for

developers: There is no need to run a separate tool, because the build server con-

tinuously updates itself to the latest source code revision, builds the application,

and runs the test suite under varying schedules.

3.2.1 Delays for Thread Methods

Delays can be inserted before and after calls to Thread.start(). Inserting a delay

after the call is an effective way of increasing the likelihood that the current parent

thread does not continue to execute, but that control passes to some other thread,

perhaps the child thread.

Inserting a delay before the call to Thread.start() can be used to uncover

bugs that assume that a child thread has been started without expressing that re-

quirement in code. The same can be accomplished with a delay at the beginning

of Thread.run(), which is executed when a thread begins to run. Given these two

equivalent ways, in the experiments in section 3.5 I chose to insert delays only be-
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fore Thread.start() and in Thread.run(), but not after Thread.start(). This

choice creates a balance of delays inserted in the parent and the child thread in-

stead of putting two consecutive delays in the parent thread.

Delays could be inserted before or after Thread.join(), but there is no need

to offer both choices. After the call to Thread.join(), only the caller thread con-

tinues to execute, and an inserted sleep placed before or after the call will delay

the execution of that thread. A delay before Thread.join(), however, increases

potential concurrency in the sense that more threads are still alive, which is why I

chose this location rather than inserting delays after Thread.join(). The same re-

sult could be achieved with a delay inserted in Thread.exit(), which gets executed

before a thread terminates; however, placing a delay both in Thread.join() and

Thread.exit() is not necessary.

The methods in the Thread class are simple to modify using local instrumenta-

tion (see section 6.2): All the changes can be directly inserted into the bytecode of

the methods.

3.2.2 Delays for Object Methods

The methods in the Object class are more difficult to modify. The notify(),

notifyAll(), and wait() methods are native and therefore contain no bytecode

that can be modified directly. Because of the way the JVM links native methods to

their native code, these methods also cannot be renamed and called from wrapper

methods that take their places.

The only way to instrument calls to these method is through global instrumen-

tation (see section 6.2): A call to SyncPointBuffer.randomDelay(), the method
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that implements the random delay, is inserted directly before or after all calls to

notify(), notifyAll(), and wait().

Random delays before notify() and notifyAll() can change the thread that

receives the notification, which can lead to large changes in the schedule. Delays

after calls to these methods expose problematic programs that rely on the fact that

most schedulers allow the current thread to continue, even after another thread has

been notified, without expressing that requirement in code.

Another common class of bugs is the “missed notification.” Java does not

record the fact that an object has been notified, and if a thread is not waiting for

a notification when it is sent, the signal is lost. Because of this, as well as spurious

wake-ups∗, Java programs should also use a volatile flag and call wait() in a loop.

Inserting a delay before wait() increases the likelihood that a program that does

not use a flag will miss a notification.

3.2.3 Delays for Lock Operations

The Java opcodes for acquiring and releasing locks, MONITORENTER and

MONITOREXIT, as well as calls to synchronized methods, also represent synchroniza-

tion points that should be the targets of random delays.

Random delays inserted before a MONITORENTER can change the thread that ac-

quires the lock, which can lead to large changes in the schedule. The possibility of

inserting method calls after a MONITORENTER and before and after a MONITOREXIT

largely exists to support other tools, like a schedule recorder and a deadlock moni-

tor [34].

∗join() and wait() may resume spuriously (§17.8.1 JLS [43]).
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Acquiring or releasing a lock is not performed using a method call; therefore,

it is impossible to modify just one method and see the desired change everywhere,

which could be done for the methods in the Thread class. Just like for the methods

in Object, calls to SyncPointBuffer.randomDelay() have to be inserted directly

before and after the MONITORENTER and MONITOREXIT opcodes.

Synchronized methods are different. There are no opcodes that correspond to

the synchronized method acquiring or releasing a lock; instead, this is done im-

plicitly by the JVM. Naively, a call to a synchronized method like the one in list-

ing 3.1 can be instrumented by inserting calls to SyncPointBuffer.randomDelay()

both at the call site and inside the method, as shown in listing 3.2. Instead, Concu-

test transforms the synchronized method into an unsynchronized method that

contains a synchronized block; the framework then treats the MONITORENTER and

MONITOREXIT opcodes of that synchronized block as described above. This transfor-

mation turns what would otherwise be an expensive global instrumentation into a

local change.

1// call site

2someObject.syncMethod ();

3
4// ...

5class SomeObject {

6public synchronized void syncMethod () {

7// ...

8}

9}

Listing 3.1: Synchronized Method before Instrumentation
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1// call site

2randomDelay (); // before acquiring lock

3someObject.syncMethod ();

4randomDelay (); // after releasing lock

5
6// ...

7class SomeObject {

8public synchronized void syncMethod () {

9randomDelay (); // after acquiring lock

10// ...

11randomDelay (); // before releasing lock

12}

13}

Listing 3.2: Synchronized Method Naively Instrumented

3.2.4 Delays for Field Accesses

Just like lock operations, field accesses are performed using opcodes. Consequently,

adding delays before field accesses requires a global instrumentation of all methods

that read or write a field. The opcodes that correspond to read and write opera-

tions are GETSTATIC and PUTSTATIC for static fields and GETFIELD and PUTFIELD

for non-static fields.

In a race-free program, shared fields are either volatile, or all threads accessing a

shared field consistently hold at least one lock when reading from or writing to that

field. In that case, it is not necessary to add delays before accessing non-volatile

fields because the field access is on the inside of a critical block, and a delay is al-

ready inserted when the lock is acquired.

To minimize unnecessary delays, Concutest determines at instrumentation time

whether an accessed field is volatile and only inserts delays if that is the case.

Unlike the static modifier, which causes the compiler to emit GETSTATIC and

PUTSTATIC opcodes instead of GETFIELD and PUTFIELD opcodes, the volatile
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1someObject.syncMethod ();

2
3// ...

4class SomeObject {

5public void syncMethod () { // not synchronized anymore

6randomDelay (); // before acquiring lock

7synchronized(this) {

8randomDelay (); // after acquiring lock

9// ...

10randomDelay (); // before releasing lock

11}

12randomDelay (); // after releasing lock

13}

14}

Listing 3.3: Synchronized Method Instrumented as Method with Synchronized
Block

modifier has no impact on the generated opcode. Finding out whether a field is

volatile is therefore more involved and requires finding the class that contains the

field on the classpath, loading it, and examining its list of fields.

The developer can also choose to add delays before non-volatile variable ac-

cesses as well. Doing so increases the number of delays that are inserted, but it may

make it unnecessary to run a race detector in parallel.

3.2.5 Delays for Array Accesses

The JVM implements array accesses using the ?ALOAD and ?ASTORE families of op-

codes (e.g. IALOAD and IASTORE to read and write integer arrays, respectively).

The instrumentation is similar to that of field accesses described above.

Since only the array object itself can be declared volatile, but not the array ele-

ments†, accesses to all array elements have to be treated as synchronization points.

†Using Type Annotations (JSR 308) [47], a @Volatile annotation could be placed on the array

dimension: int @Volatile[] i; could be a non-volatile field with volatile int array elements.
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Depending on the compiler, an exception can be made if the array object has

been loaded from a field. The javac compiler, for example, emits fresh GETFIELD

and PUTFIELD or GETSTATIC and PUTSTATIC opcodes every time an array stored in

a field is accessed. javac does not cache the value of the array object on the stack

by loading and then duplicating it using DUP, even if the two accesses are very close

to each other and the field storing the array is final. Because of the close proxim-

ity of the opcode that loads the array from the field and the opcode that reads or

writes one of the array elements, it is unnecessary to add an additional delay be-

tween those two operations.

This optimization only applies to javac-generated code, and it does not hold

for arrays in local variables. If an array in a local variable could be shared across

thread boundaries, then all ?ALOAD and ?ASTORE opcodes operating on the array

should be instrumented with random delays.

3.3 Instrumentation with Random Yields

An instrumentation strategy that inserts random yields instead of random delays

has also been developed. Instead of inserting a call to Thread.sleep() that gets

executed with a certain probability, a similar call to Thread.yield() is inserted.

This strategy is conceptually simpler than the strategy that uses delays:

• The call to Thread.yield() is almost a no-op if the program is not multi-

threaded and there is no other thread that can execute. The delay strategy,

described above, maintains a count of the running threads to avoid inserting

delays in single-threaded situations.
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• The parameter space is smaller for Thread.yield() than for

Thread.sleep(). For the latter, the tester needs to choose the probability

that a delay is executed at all, and then describe the distribution of the du-

rations. For Thread.yield(), the only parameter is the probability that it is

executed.

The effectiveness of the strategy that uses yields has not been thoroughly re-

searched, though. Previous studies indicate that random yields are less effective

than random delays [9, 42].

3.4 Restrictions on Programs

For the strategy of inserting random delays at synchronization points to be effec-

tive, the program has to fulfill several requirements:

• All uncaught exceptions and failed assertions have to be detected, regardless

of the thread in which they occur.

• For the unit testing framework to function properly, all child threads should

be joined by the test’s main thread.

The simplest way of ensuring the previous two requirements is to use an im-

proved unit testing framework such as ConcJUnit, introduced in the previous chap-

ter.

• The program must employ a consistent locking discipline when accessing data

that is shared across threads. In the case of Java, this requires that a shared

variable is either volatile, or that at least one lock is consistently held every

time that variable is accessed.
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This third requirement essentially implies that the program is race-free, as de-

fined by the Java Memory Model [46]. The “races” occur only when attempting

to acquire locks or when accessing volatile variables. To ensure that a program

meets this third requirement, the programmer can run a race detector such as Fast-

Track [12] in parallel with Concutest.

These requirements do not seriously impede programmers, and without meeting

them, Concutest may not be effective at detecting most concurrency problems.

It may also be useful for the programmer to manually specify which volatile

variables and which arrays are being shared between threads, and which classes

should be instrumented. There are numerous volatile variables and arrays in the

Java API, and many of them may not have an effect on the concurrent behavior of

the program.

In fact, many of the volatile variables and arrays in a program may not even be

shared. It is possible to use static analysis to conservatively determine which vari-

ables and arrays could be shared, for example using Soot’s “may happen in paral-

lel” (MHP) [39, 24] analysis.

Unfortunately, Soot’s MHP implementation does not scale to production-size

programs. At this time, instrumenting all user classes, but not most of the Java

API, is a viable compromise.

3.5 Results

To test the effectiveness of running unit tests under varying schedules by inserting

random delays or yields, I created several tests representative of common concur-
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rency problems and established whether the instrumentation helped in detecting

the problems.

Several of the examples are directly inspired by the tests used in the literature

to evaluate the effectiveness of ConTest [9] and rstest [42]. Unfortunately, direct

quantitative comparisons are not possible, since neither ConTest nor rstest made

source code or information about the test hardware available. The tests were de-

scribed in prose, though, and independently re-implemented. Concutest, the frame-

work developed as part of this thesis, was able to detect all the concurrency prob-

lems that ConTest or rstest were able to detect.

The results are described in the sections below and summarized in the following

tables. Table 3.7 provides the percentages of the errors detected by the two previ-

ous frameworks, ConTest and rstest, and the average percentage of errors detected

by Concutest. Table 3.8 shows the number of experiments run with ConTest and

rstest, and the average number of experiments run with Concutest. In most cases,

the performance of Concutest exceeds that of ConTest, and Concutest is at least

comparable to rstest.

3.5.1 Configurations

Note that both the percentage of errors detected and the number of experiments

in tables 3.7 and 3.8 are averages for Concutest, since Concutest was tested on four

different hardware and software configurations:

• i7 configuration: Apple MacBook Pro (6.2), Intel Core i7, 2.66 GHz, 4 GB

RAM, Mac OS X 10.6.6
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• Core Duo configuration: Apple MacBook (1.1), Intel Core Duo, 2 GHz, 2

GB RAM, Mac OS X 10.4.11

• Core 2 Duo configuration: Dell Dimension 9200, Intel Core 2 Duo, 2.4 GHz,

4 GB RAM, Windows XP

• i7 Quad configuration: Dell Studio 435MT, Intel Core i7, 2.66 GHz, quad

core, 4 GB RAM, RedHat Enterprise Linux RHEL 4.1.2-46

Tables 3.9 and 3.10 break the results down and show the percentages of errors

detected and the numbers of experiments run, respectively, for the different configu-

rations.

It is noteworthy that the experiments were run many more times than ConTest’s

and rstest’s experiments [9, 42]. This was one of the measures undertaken to ensure

reproducibility, along with using Concutest on multiple configurations and publish-

ing the source code for the experiments.

Experiment ConTest rstest Concutest

Errors Detected none sleep yield none sleep none sleep

ConTestOne 0.0% 20.0% 0.3% 0.6% 33.0%

FundManagers 0.0% 80.0% 0.0% 100.0% 13.8% 100.0%

ConTestThree 0.0% 35.0% 0.2% 79.7%

ConTestFour 0.0% ? 63.1% 99.8%

RSTestOne 0.0% 100.0% 9.3% 99.8%

Table 3.7 : Summary of Scheduling Experiments: Percentage of Errors Detected
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Experiment ConTest rstest Concutest

average

Experiments Run none sleep yield none sleep none sleep

ConTestOne 1000 1000 1000 14644 12483

FundManagers 1000 1000 10 min? 10? 35385 10525

ConTestThree 500 2000 12237 12208

ConTestFour 1000 1000 13489 11907

RSTestOne 10? 10? 11898 11958

Table 3.8 : Summary of Scheduling Experiments: Number of Experiments Run

Experiment Concutest Concutest Concutest Concutest Concutest

Errors Detected i7 Core Duo Core 2 Duo i7 Quad average

ConTestOne
none 0.0% 0.3% 1.4% 0.7% 0.6%

sleep 41.0% 29.6% 31.1% 30.3% 33.0%

FundManagers
none 8.3% 0.1% 3.6% 43.2% 13.8%

sleep 99.9% 100.0% 100.0% 99.9% 100.0%

ConTestThree
none 0.0% 0.0% 0.0% 0.7% 0.2%

sleep 96.2% 96.2% 96.3% 30.3% 79.7%

ConTestFour
none 70.7% 2.3% 79.6% 99.9% 63.1%

sleep 99.8% 99.5% 100.0% 100.0% 99.8%

RSTestOne
none 0.7% 1.0% 35.2% 0.4% 9.3%

sleep 99.7% 99.8% 99.8% 99.8% 99.8%

Table 3.9 : Detailed Results for Scheduling Experiments: Percentage of Errors De-
tected

3.5.2 Test Parameters

For all of these experiments, random delays with durations of 75 to 150 ms, linearly

distributed, were inserted with a probability of 0.4 when more than one thread was

running.

The enabled insertion sites were:
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Experiment Concutest Concutest Concutest Concutest Concutest

Experiments Run i7 Core Duo Core 2 Duo i7 Quad average

ConTestOne
none 10001 12574 26000 10000 14644

sleep 12356 15494 12080 10000 12483

FundManagers
none 52200 30300 27000 32041 35385

sleep 10800 10500 10800 10000 10525

ConTestThree
none 10628 11278 17041 10000 12237

sleep 11355 15394 12081 10000 12208

ConTestFour
none 10528 11169 22259 10000 13489

sleep 11255 15294 11080 10000 11907

RSTestOne
none 10628 11267 15697 10000 11898

sleep 11356 15394 11081 10000 11958

Table 3.10 : Detailed Results for Scheduling Experiments: Number of Experiments
Run

• after Thread.start() (in the parent thread),

• before Thread.join(),

• before Object.notify() and Object.notifyAll(),

• before Object.wait(),

• before acquiring a lock, i.e. before MONITORENTER, and

• before accessing a volatile field.

This subset of enabled insertion sites was chosen to increase the probability of

encountering common concurrency problems:

• By delaying the parent thread after Thread.start(), it becomes more likely

that the child thread starts executing immediately, a behavior that is usually

uncommon.
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• Delaying a thread before or after Thread.join() challenges the assumption

that a thread which joins a dead thread continues executing immediately.

• Inserting delays before Object.notify() and Object.notifyAll() can change

the threads that receive the notification.

• Delaying a call to Object.wait() makes a “missed notification” problem more

likely, in which a Java notification is lost because no other thread is waiting

for it.

• A delay before acquiring a lock changes the order in which threads execute

synchronized blocks.

• Delaying accesses to volatile fields can expose atomicity violations.

The experiments exhibiting some of these common concurrency problems are

described below.

3.5.3 Experiment 1: Race

The first test, inspired by ConTest’s first experiment and shown in the appendix in

listing B.1, has several threads racing to set a flag first. The threads are normally

too short to be preempted, and each thread usually finishes before the next thread

even starts. This is, however, not ensured using program constructs; therefore, it is

possible for several threads to claim to be “first” if a context switch occurs after the

flag is checked in line 9 and before the flag is set in line 10.

According to the Edelstein paper [9], ConTest detected the bug in 200 of 1000

runs when the program was seeded with random sleeps, and in 3 out of 1000 runs
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when random yields were used. Without sleeps or yields, the bug was never ob-

served.

This experiment was run at least 10000 times on each of the four configurations

without Concutest, and no 0.0%, 0.3%, 1.4%, and 0.7% of the errors were detected

on i7, Core Duo, Core 2 Duo, and i7 Quad, respectively. Observing this kind of

race condition is therefore very rare. Concutest then added random sleeps to the

program, and the experiment was repeated over 12000 times on each platform. The

detection rate jumped remarkably to 41.0% on i7, 29.6% on Core Duo, 31.1% on

Core 2 Duo, and 30.3% on i7 Quad. These detection rates exceed the published de-

tection rate of ConTest [9].

Note that ConTest was able to detect this problem by itself when all variable ac-

cesses were instrumented with delays or yields. The race detector that should run

in parallel with Concutest, though, would have alerted the programmer to the pres-

ence of a race condition. With synchronized blocks inserted, the variable changed

to volatile, or delays specifically enabled for the variable, Concutest was also able

to expose the non-determinism.

3.5.4 Experiment 2: Atomicity

The second test, used by ConTest as well as rstest, was first presented in a JDC

Tech Tip [48]. The Tech Tip archive was not available anymore, but the source the

ConTest example was based on was eventually retrieved. The salient parts of the

source code are shown in listing B.2 and listing B.3.

In this experiment, a simulation of a stock exchange, several threads perform

transfers from one account to another. In doing so, they add or subtract from

shared data without performing synchronization to ensure that the reads and writes
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are atomic: The read-and-write operation balances[t.fundFrom] -= t.amount; in

line 5 (and similarly balances[t.fundFrom] -= t.amount; in line 6) generates the

non-atomic bytecode instructions in listing 3.4.

1GETSTATIC balances

2ALOAD_0

3GETFIELD fundFrom

4DUP2

5IALOAD

6ALOAD_0

7GETFIELD amount

8ISUB

9IASTORE

Listing 3.4: Annotated Classes

If a context switch occurs after a thread has executed the IALOAD, but before

it has executed the IASTORE, and another thread also begins to execute the same

read-and-write operation, one of the writes may be lost.

ConTest detected the bug in 800 of 1000 runs when the program was seeded

with random sleeps, but never observed without the inserted sleeps. Since the Con-

Test paper mentions that Edelstein et al. “modified the original program so that

move money contained busywork (a loop of empty writes)” [9], but does not de-

scribe the modifications in closer detail, it is even more difficult to quantitatively

compare the effectiveness of Concutest to that of ConTest.

In rstest’s version without sleeps or yields, the bug was never observed in 10

runs with “few thousand transfers.” When rstest inserted sleeps or yields, the bug

“manifested itself many times in each execution.” [42] The way these results are

stated makes a quantitative comparison impossible.
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The experiment was run over 27000 times on each of the four configurations,

and without Concutest, the defect was detected 8.3%, 0.1%, 3.6%, and 43.2% of the

times on i7, Core Duo, Core 2 Duo, and i7 Quad, respectively. Reliably detecting

this kind of problem without help is problematic, except perhaps on the quad-core

i7, which can run more threads in concurrently.

After Concutest had inserted random sleeps into the program, the experiment

was repeated at least 10000 times on each configuration, and the detection rate

jumped to nearly 100%. Concutest makes atomicity violations trivial to observe,

and its detection rates exceed that of ConTest [9] and are comparable to that of

rstest [42].

3.5.5 Experiment 3: Uninitialized Data

ConTest also provided the inspiration for the third test, shown in listing B.4. The

most important pieces of this example were available in the ConTest paper [9], but

details about how these parts were set up were missing again.

Again, there was a problem with atomicity, as well as a race condition. If a con-

text switch occurs after the notified = true; in line 32, but before the subject

field can be initialized in the following line, the thread may use the uninitialized

subject field in line 29.

The ConTest paper states that the bug was never observed in any of 500 runs,

each with four threads. When instrumented with random sleeps or yields, ConTest

revealed the problem “about 700 times in 2000 tests” [9].

This experiment was run at least 10000 times on each of the configurations

without the help of Concutest, and the error was never detected on i7 (0.0%), once

on Core Duo (0.0%), eight times on Core 2 Duo (0.0%), and 71 times on i7 Quad
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(0.7%). After inserting random sleeps using Concutest and repeating the experiment

at least 10000 times on each platform, 96.2%, 96.2%, 96.3%, and 30.3% of the de-

fects were observed on i7, Core Duo, Core 2 Duo, and i7 Quad, respectively. Except

for the i7 Quad detection rate, these rates far exceed the published detection rate

of ConTest. The i7 Quad detection rate is similar to the rates published for Con-

Test [9].

3.5.6 Experiment 4: Chain of Threads

The fourth test is the final example that was provided by ConTest. It is shown in

listing B.5.

Ten threads are spawned recursively in line 29 under the assumption that the

current thread continues to execute; if, however, the spawned child thread starts

executing immediately, it will attempt to get a value from a hash map that has not

been inserted by the parent thread in line 30 yet, causing a NullPointerException

in line 26.

As part of the ConTest study, the experiment was repeated 1000 times. The re-

sults (370 faults for NT, 12 for yield, 0 for sleep, and 6 for priority [9]), however,

are not well explained. Instead, Edelstein et al. focus on how instrumentation with

ConTest changes the number of concurrent threads in the experiment, and interpret

the results as evidence that ConTest can lessen the impact of the operating system

on program behavior.

As part of this thesis, the experiment was run at least 10000 times on each con-

figuration without instrumentation by Concutest. On the Core Duo, the least pow-

erful of the configurations, the problem was apparent only 2.3% of the time. On the

Core 2 Duo, the i7, and the i7 Quad, the defect could be detected in 79.6%, 70.7%,
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and 99.9% of the executions without the help of Concutest. This demonstrates that

some problems that hardly ever appear on less powerful machines may become very

obvious on more recent systems.

When Concutest added bytecode for random delays and the experiment was re-

run over 11000 times, detection rates increased to 99.8% on the i7, 99.5% on the

Core Duo, 100.0% on the Core 2 Duo (11079 out of 11080 defects detected), and

100.0% on the i7 Quad (9994 out of 10000 defects detected).

3.5.7 Experiment 5: Missed Notification

The fifth test was used as first example in the rstest paper. It is based on NASA’s

Remote Agent, a spacecraft controller developed at NASA Ames Research Center.

The source code of the example, shown in listing B.6, was re-constructed using an

excerpt found in a Java PathFinder paper [54] that was cited in the rstest paper [42].

The problem in NASA’s Remote Agent is a lack of atomicity. If a context

switch occurs in line 38 after the conditional has evaluated to true but before the

resulting event1.wait_for_event(); in line 39 can be executed, then it is possible

for the thread to miss the notification sent by notifyAll() when another thread

invokes e1.signal_event();. As a result, the first thread now waits forever.

Without rstest, no deadlock was observed “in 10 minutes of execution.” When

using rstest in 10 runs, a deadlock on average occurred after just 0.5 seconds.

When run at least 10000 times without the help of Concutest on each configu-

ration, the deadlock was observed only 0.7% and 1.0% of the times on the Mac OS

X-based i7 and Core Duo configurations and 0.4% of the time on the Linux-based

i7 Quad, but 35.2% of the times on the Windows-based Core 2 Duo configuration.
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This shows that the operating system may have a major impact on the visibility of

a bug as well.

After Concutest had added random delays in critical places and the program

was run again over 11000 times per configuration, the detection rates were nearly

uniform at 99.7%, 99.8%, 99.8%, and 99.8% for i7, Core Duo, Core 2 Duo, and i7

Quad, respectively. Concutest can therefore be used to temper the impact of the

operating system choice on testing.

The results of all of these experiments show that Concutest is a powerful tool for

testing concurrent programs under varying schedules.
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Chapter 4

Execution Logging

The previous two chapters presented necessary tools for testing concurrent pro-

grams. Without a unit testing framework that detects problems in all threads and

a component that allows execution under various schedules, it is likely that concur-

rency bugs are missed during testing.

Writing unit tests for concurrent programs is nonetheless difficult. This chapter

and the next chapter focus on making that task simpler. The execution logger de-

scribed in this chapter records whether certain parts of the code were executed, and

if so, how often. These pieces of information can then be checked in the unit tests.

Test and application source code should remain loosely coupled. Ideally, there

should be no burden on the performance or complexity of the application source

code just to allow testing. Unfortunately, testing becomes difficult when meth-

ods do not have a return value that can be tested directly. Graphical user inter-

face (GUI) frameworks and thread-related parts of the Java API often employ the

Runnable interface shown in listing 4.1, where exactly that is the case: The run()

method does not return a value, and whether the method executed can only be es-

tablished by looking for side effects, which may be difficult to observe.

The traditional approach to make void methods testable is to introduce a flag

that is set by the method in question when it is executing. Doing so introduces
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1package java.lang;

2public interface Runnable {

3public void run();

4}

Listing 4.1: Runnable Interface

testing concerns into the application that do not belong there and that could po-

tentially be costly if the method being logged is executed frequently.

Using Java annotations, the programmer can encode which methods should be

logged as metadata—data about the program—without changing the application

source code. A program then processes the annotations using bytecode rewriting

to introduce logging only in those methods that require it, and only in test builds.

The released application code does not contain any logging instructions at all.

4.1 Logging Annotations

The execution logging tool introduced as part of this thesis provides several ways of

specifying which methods should be logged.

4.1.1 Using the @LogThis Annotation

The simplest way to indicate which methods should be logged is by placing a

@LogThis annotation directly in front of the method that should be logged. To log

all methods in a class, @LogThis can also annotate a class. Examples of both are

shown in listing 4.2. A unit test can then assert that a method was or was not exe-

cuted or compare the execution count. A unit test like that is shown in listing 4.3.

The first @LogThis annotation in line 2 of listing 4.2 causes the noResult()

method of the LogJustThisMethod class to be logged; the notLogged() method
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1class LogJustThisMethod {

2@LogThis

3public void noResult () { // no return value

4// do something

5}

6
7public void notLogged () {

8// not logged

9}

10}

11
12@LogThis

13class LogAllMethods {

14public void alsoNoResult(double d) { // no return value

15// do something

16}

17
18// has return value , but is also logged

19public int timesTwo(int i) {

20// do something

21return i*2;

22}

23}

Listing 4.2: Examples of Using @LogThis

1import static edu.rice.cs.cunit.execLog.ExecutionLog .*;

2
3public class LogThisTest extends TestCase {

4public void testLog () {

5assertHasNotExecuted("LogJustThisMethod.noResult ()");

6assertHasNotExecuted(LogAllMethods.class , "alsoNoResult(

double)");

7assertHasNotExecuted("LogAllMethods.timesTwo");

8new LogJustThisMethod ().noResult ();

9LogAllMethods o = new LogAllMethods ();

10o.alsoNoResult (3.14);

11int i = o.timesTwo (3);

12int j = o.timesTwo (5);

13assertHasExecuted("LogJustThisMethod.noResult ()");

14assertHasExecuted("LogAllMethods.alsoNoResult(double)");

15assertHasExecuted(LogAllMethods.class , "timesTwo");

16assertExecutionCountEquals("LogAllMethods.timesTwo", 2);

17}

18}

Listing 4.3: Unit Test Referring to Methods and Classes Annotated with @LogThis
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is not logged. The second @LogThis annotation in line 12 enables logging for all

methods in the LogAllMethods class of the example.

Lines 5 to 7 in listing 4.3 then assert that none of the three logged methods

have been executed at the beginning of the test. There are two different ways of

specifying the method, either as combined class and method string, or using a class

literal and a method string∗. Note that providing the parameter types is only nec-

essary if the method is overloaded; if the name of a method uniquely identifies it,

the parentheses and parameter types can be omitted, as shown in line 7

In lines 8 to 12, the test makes several calls to the methods being logged. Lines

13 to 15 then assert that the methods have indeed been executed. The last line of

the test method compares the actual execution count of the timesTwo method in

the LogAllMethods class to the expected count of 2. It is an error for a unit test

to make assertions about methods that have not been logged, or to use ambiguous

method strings.

4.1.2 Using the @LogTheMethod and @LogTheClass Annotations

Specifying methods and classes that should be logged using @LogThis annotations

makes it unnecessary to introduce a field and add code to set that field; however, it

is still necessary to change the source code of the application.

∗A method literal, similar to a MyClass.class class literal, would be useful. For example,

MyClass.myMethod.method could be used to refer to the myMethod() method in the MyClass

class. To deal with overloaded methods, parameter types would have to be specified, as in

MyClass.myMethod.method(int). The type of the method literal should be the appropriate

java.lang.reflect.Method instance.
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1import static edu.rice.cs.cunit.execLog.ExecutionLog .*;

2
3public class LogTheXTest extends TestCase {

4@LogTheClass ({ LogAllMethods.class})

5@LogTheMethod ({

6@MethodDesc("LogJustThisMethod.noResult ()")

7})

8public void testLog () {

9assertHasNotExecuted("LogJustThisMethod.noResult ()");

10// ...

11assertExecutionCountEquals("LogAllMethods.timesTwo", 2);

12}

13}

Listing 4.4: Unit Test Referring to Methods and Classes using @LogTheClass and
@LogTheMethod

Using the @LogTheClass and @LogTheMethod annotations, the programmer can

specify in the test code which methods should be instrumented for logging. The

two annotations in listing 4.4 accomplish the same as the two @LogThis annota-

tions shown above in listing 4.2, making it unnecessary to change the application

code for testing.

Note that the arguments to the @LogTheClass and @LogTheMethod annotations

are both arrays. This is necessary because Java does not allow multiple occurrences

of the same annotation in the same place. Java does not allow the syntax

@LogTheClass(Foo.class)

@LogTheClass(Bar.class)

void m() { ... }

and instead requires an array as alternative:

@LogTheClass({Foo.class, Bar.class})

void m() { ... }
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The change above is relatively simple for the @LogTheClass annotation, but

it becomes more difficult for @LogTheMethod, which should provide several ways

of specifying the method, e.g. as a combined class and method string, or as class

literal and method string. Here, the desired syntax

@LogTheMethod("Foo.someMethod")

@LogTheMethod(c=Bar.class, m="otherMethod")

void m() { ... }

has to be replaced by a much more cumbersome representation that uses a

helper annotation for method descriptions, @MethodDesc:

@LogTheMethod({

@MethodDesc("Foo.someMethod"),

@MethodDesc(c=Bar.class, m="otherMethod")

})

void m() { ... }

Another advantage of providing the set of methods for which execution should

be logged at the beginning of a test method is that logging can be enabled for that

test only. Other tests, which do not need these methods to be logged, will not be

impacted by the instrumentation. Such a differentiation, implemented using a cus-

tom class loader, allows execution logging of methods for some basic unit tests

without slowing down the execution of aggregate unit tests that may call those

methods frequently.



74

4.1.3 Logging Anonymous Inner Classes

Using @LogTheMethod and @LogTheClass annotations to specify which methods

should be logged for a certain test works well. It keeps the application code com-

pletely free of any test-related concerns.

Unfortunately, the methods to be logged are referred to by name, which be-

comes problematic with anonymous inner classes that do not have a name.

There are several ways of still identifying a method in an anonymous inner class

exactly:

• Use the anonymous inner class number, e.g. SomeClass$1.someMethod().

This solution is brittle: The number depends on the order of anonymous in-

ner classes in the containing class. Furthermore, the number is chosen by the

javac compiler, and the numbering scheme could change from one version to

the next.

• Use a line number to identify the method. This choice is also brittle, as it de-

pends on the layout of the enclosing source code.

• Use @LogThis in the application code. This solution precisely identifies the

method of interest, but introduces testing concerns into the application source

code, as explained above.

• Extend the @LogTheMethod and @LogTheClass annotations to allow logging

in methods of subclasses to be enabled. The annotation can then specify base

class that the anonymous inner class extends. An example of this approach is

shown in listing 4.5.



75

1import static edu.rice.cs.cunit.execLog.ExecutionLog .*;

2
3public class LogTheXAnonymousTest extends TestCase {

4@LogTheMethod ({

5@MethodDesc(value="Runnable.run()", subclasses=true)

6})

7public void testLog () {

8assertHasNotExecuted("Runnable.run()");

9LogClassWithAIC ().doSomething ();

10// execution count is 2, not specific to any

11// Runnable subclass

12assertExecutionCountEquals("Runnable.run()", 2);

13}

14}

Listing 4.5: Example of Using @LogTheMethod with Anonymous Inner Classes

The latter solution, enabling logging in subclasses, is the most robust of the

choices. It keeps test concerns completely out of the application code. This ap-

proach, however, lacks specificity. The final execution count for Runnable.run()

in listing 4.5 after executing the code in listing 4.6 is 2, because the logging system

does not distinguish between the two subclasses of Runnable.

It is possible to extend the @MethodDesc method description annotation to

include more detail to reclaim the specificity, e.g. by mentioning the enclosing

method by name, as shown in listing 4.7. Other parameters to make method de-

scriptions more specific include the name of the source file name, the return type,

and the exact signature, including return type and parameter names.

Note that the example in listing 4.7 still does not allow the test to distinguish

between the execution counts of the two Runnable anonymous inner classes. The

example determines that the execution count for Runnable and its subclasses is 1,

because only one anonymous inner class was instrumented for logging. To verify

that the methods in both anonymous inner classes were executed once, the pro-
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1public class LogClassWithAIC {

2public static void doSomething () {

3new Runnable () {

4public void run() {

5System.out.println("First AIC");

6}

7}.run();

8somethingElse ();

9}

10public static void somethingElse () {

11new Runnable () {

12public void run() {

13System.out.println("Second AIC");

14}

15}.run();

16}

17}

Listing 4.6: Example Application Code with Anonymous Inner Classes to be
Logged Using @LogTheMethod

1import static edu.rice.cs.cunit.execLog.ExecutionLog .*;

2
3public class LogTheXAICEnclosingTest extends TestCase {

4@LogTheMethod ({

5@MethodDesc(

6value="Runnable.run()", subclasses=true ,

7enclosing="LogClassWithAIC.doSomething"

8)

9})

10public void testLog () {

11assertHasNotExecuted("Runnable.run()");

12LogClassWithAIC ().doSomething ();

13// execution count is 1, only enclosed in doSomething ()

14assertExecutionCountEquals("Runnable.run()", 1);

15}

16}

Listing 4.7: Example of Specifying the Enclosing Method when Using
@LogTheMethod with Anonymous Inner Classes
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1import static edu.rice.cs.cunit.execLog.ExecutionLog .*;

2
3public class LogTheXAICFriendlyTest extends TestCase {

4@LogTheMethod ({

5@MethodDesc(

6value="Runnable.run()", subclasses=true ,

7enclosing="LogClassWithAIC.doSomething",

8friendly="Runnable1"

9)

10@MethodDesc(

11value="Runnable.run()", subclasses=true ,

12enclosing="LogClassWithAIC.somethingElse",

13friendly="Runnable2"

14)

15})

16public void testLog () {

17assertHasNotExecuted("Runnable1");

18assertHasNotExecuted("Runnable2");

19LogClassWithAIC ().doSomething ();

20// execution count is 1 for each friendly name

21assertExecutionCountEquals("Runnable1", 1);

22assertExecutionCountEquals("Runnable2", 1);

23}

24}

Listing 4.8: Example of Specifying Friendly Names when Using @LogTheMethod

with Anonymous Inner Classes

grammer can add “friendly names” to the @LogTheMethod annotations and use

them in the test, which is shown in listing 4.8.

One problem with adding more optional detail to the @MethodDesc annotation

is that it becomes cumbersome to check whether all necessary parts of an optional

component have been provided. For example, the enclosing method could be spec-

ified using a single class-and-method string, as in listing 4.7, but it could also be

provided using two separate members: a class literal and a string with just the

method name (and parameter types). Providing just the class literal should be an

error.
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Furthermore, the framework developer has to decide whether all provided in-

formation should be combined in a conjunction, which is what I did here, or in a

disjunction. As I pointed out before, it becomes difficult to express richer languages

using expressions if subtyping is not available for annotations [34].

4.1.4 Logging Annotations with Subtyping

When subtyping is available for annotations, it is much simpler to create expres-

sion languages using annotations. The examples discussed in this section require a

compiler that supports subtyping for annotations, such as the xajavac compiler [32].

The main benefit of subtyping for annotations is that it allows the use of the

composite design pattern [13]. As part of the execution logging system, I have de-

fined an abstract @LogLocation supertype, and several interfaces that extend that

supertype, such as @TheClass, @TheMethod, @InFile, and @EnclosingMethod.

These annotations are leaves in the metadata structure. The Boolean operators

@And, @Or, and @Not make up the composite cases and can contain any annotations

that extend @LogLocation. Since the Boolean operators are annotations them-

selves, they can be arbitrarily nested as well.

Listing 4.9 shows how these composite cases can be defined with subtyping

available. Listings 4.10 and 4.11 contain a few annotation declarations and a usage

example.

4.2 Implementations of Execution Logging

I experimented with several different implementations of the logging system. The

initial designs used central HashMap data structures that stored the execution
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1@interface And extends LogLocation {

2/** @return log location annotations. */

3LogLocation [] value ();

4}

5
6@interface Or extends LogLocation {

7/** @return log location annotations. */

8LogLocation [] value ();

9}

10
11@interface Not extends LogLocation {

12/** @return log location annotation. */

13LogLocation value ();

14}

Listing 4.9: Boolean @And, @Or, and @Not Operators for Logging Locations

1// common superclass

2@interface LogLocation { }

3
4// annotation specifying log location and friendly name

5public @interface Log {

6/** @return log location annotation. */

7LogLocation value ();

8/** @return friendly name for this location. */

9String friendly () default "";

10}

Listing 4.10: Annotation Definitions for Logging Annotations with Subtyping

1@Log(

2@Or({

3@And({

4// subclasses of Runnable that are ...

5@SubClassOf(Runnable.class),

6// ... defined in MyApp.java ...

7@InFile("MyApp.java"),

8// ... but not enclosed in the MyApp.foo method

9@Not(@EnclosingMethod("MyApp.foo"))

10})

11// or the MyApp.foo method

12@TheMethod("MyApp.foo")

13})

14)

15void testSomething () { /* ... */ }

Listing 4.11: Usage Example for Logging Annotations with Subtyping
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counts for the different methods. When I replaced a central data structure with

individual fields, I saw a significant performance improvement that made the gener-

ated code equivalent to hand-written logging code.

• The näıve implementation used a single synchronized map for storing all exe-

cution counts. Every time a count was accessed, threads had to compete for a

single lock for synchronization. This approach was by far the easiest to imple-

ment, but it experienced significant lock contention on the dual-core i7.

• In order to avoid lock contention, I created a non-blocking implementation

using NonBlockingHashMap from the Highly Scalable Java library [8]. By stor-

ing AtomicLong values as execution counts, I was able to completely avoid

locking. This implementation avoids the performance degradation the näıve

solution displayed with more than four threads on the dual-core i7.

• A non-blocking map is still incurring overhead compared to a completely un-

synchronized map. The per-thread strategy attempts to reduce this overhead

by providing each thread with an unsynchronized map for counting execu-

tions. The maps of all threads are later combined into a complete map. Since

each thread has its own map, synchronization on that data structure is unnec-

essary.

This approach performs similarly well as the non-blocking solution, probably

because I used a NonBlockingHashMap as central storage for the per-thread

maps. Instead, I should have used bytecode rewriting to store these maps di-

rectly in each Thread object. This probably would have lead to excellent per-

formance while still being simple to implement.
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• After having recognized the central data structure as performance bottle-

neck, I designed the fields strategy to avoid any kind of map and more closely

match the code of hand-written logging.

Using bytecode rewriting, the instrumentation strategy augments the

ExecutionLog class with a separate AtomicLong field for each method

that should be logged. Synchronization is not necessary since the

incrementAndGet() operation is atomic, and there is no lookup at all, except

for the field lookup that the JVM has to perform anyway.

This approach matches the performance of hand-written logging closely, even

though all the counts are stored in a central class. The values of the fields can

easily be retrieved using reflection.

• Storing all counts in the ExecutionLog class creates a (somewhat theoretical)

limit for the execution logging system: The JVM specification limits the num-

ber of fields per class to 65535, and the maximum constant pool size to 65535

entries limits that number even further [44].

The local fields approach places the fields for the execution counts in the same

class as the method to be logged. That distributes the fields across all in-

volved classes and makes it much less likely that a field cannot be added due

to a JVM limitation.

The disadvantage of placing the fields in different classes is that lookup is

made more difficult.

A study of the generated bytecode and a series of benchmarks, described in the

section below, made it clear that local fields expectedly performs the best.
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4.3 Results

To study the performance of the different logging implementations, I created two

small and one large benchmark. These experiments were run several thousand

times on a dual-core i7 MacBook Pro and a quad-core i7 Dell desktop. The num-

ber of concurrent threads executing the same portion of code was varied from 1 to

16.

The benchmarks consisted of a tight loop, an outer loop, and a number of Dr-

Java unit tests that had used hand-written execution logging. The tight loop ex-

ample can be summarized by the two lines in listing 4.12: A no-op method is called

many times, and each invocation is logged. The outer loop example was similar,

but performed a substantial amount of work in the logged method, namely generat-

ing a Gaussian blur of an image. Listing 4.13 shows a summary of the benchmark.

The third benchmark consisted of running the DrJava unit tests with a remod-

eled GlobalModelTestCase class. DrJava installs a listener for a number of asyn-

chronous events, and every time the listener’s methods are called, a counter is in-

cremented. The listener could be completely replaced by directly logging the meth-

ods of various EventNotifier subclasses.

The performance of the different implementations was expressed as slowdown

factor, compared to the execution with hand-written logging. A slowdown factor of

2.0 means that the execution time for the code generated by the logging system was

twice as long as the time with hand-written logging. Lower slowdown factors are

therefore better, and a slowdown factor of 1.0 means that there was no slowdown at

all, compared to hand-written code.
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For the DrJava unit tests, the generated logging code performed as well as the

hand-written code. The unit test suite runs for about 10 minutes, and it was im-

possible to notice any slowdown. The code performing the logging and the unit

tests had been simplified, though.

In the tight loop benchmark, both the fields and the local fields strategy were

indistinguishable from a hand-written logging implementation. The non-blocking

and the per-thread version incurred a slowdown due to centralized storage, but the

factor became smaller with a larger number of concurrent threads. A larger number

of concurrent threads leads to some form of contention even with the hand-written

logging, which makes the overhead of maintaining a central data structure become

less significant.

The näıve implementation exhibited a significant slowdown on the dual-core i7

when four or more threads were running concurrently. Interestingly, this marked

slowdown was not observed on the quad-core i7.

Figure 4.1 and figure 4.2 show graphs of the slowdown factors of the different

implementations for varying numbers of threads on the dual-core i7 and the quad-

core i7, respectively. Table 4.1 and table 4.2 provide the numerical data the graphs

are based on.

The local fields strategy generally performs best: There is no discernable slow-

down, compared to hand-written logging. The fields implementation with all fields

in the ExecutionLog class performs almost as well. Compared to no logging, the

slowdown ranges from about 4% (factor 1.04, fields and local fields, 1 thread, both

i7 and i7 Quad) to no slow down (factor 1.00, fields and local fields, 16 threads,

both i7 and i7 Quad).
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1for(i=0; i<N; ++i) { loggedMethod (); }

2@LogThis void loggedMethod () {/*no op*/ }

Listing 4.12: Tight Loop Logging Benchmark

1for(i=0; i<N; ++i) { loggedMethod (); }

2@LogThis void loggedMethod () {

3for(j=0; i<M; ++j) { gaussianBlur (); }

4}

Listing 4.13: Outer Loop Logging Benchmark

When logging the outer loop, all implementations performed comparably well,

both to each other and to the hand-written logging. In fact, the graphs in figure 4.3

and figure 4.4 show rather noisy plots, and the error bars suggest that we cannot

pick one of the implementations as having performed the best. The conclusion we

can draw from this experiment is that all implementations of the logging framework

perform as well as hand-written logging, and that choosing the local fields imple-

mentation only becomes important when inner loops are being logged.

Table 4.3 and table 4.4 provide the numerical data for figure 4.3 and figure 4.4.

µ is the mean slowdown factor, and σM is the standard error.

Considering that the local fields implementation is equivalent to hand-written

logging code, the execution logging tool provides a convenient and efficient means

to keep application and tests decoupled when testing whether certain parts of an

application program have executed.
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Figure 4.1 : Slowdown Factor for n Threads in a Tight Loop Compared to Hand-
written Logging, i7

Figure 4.2 : Slowdown Factor for n Threads in a Tight Loop Compared to Hand-
written Logging, i7 Quad
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Figure 4.3 : Slowdown Factor for n Threads in an Outer Loop Compared to Hand-
written Logging, i7

Figure 4.4 : Slowdown Factor for n Threads in an Outer Loop Compared to Hand-
written Logging, i7 Quad
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Threads 1 2 4 8 16

Näıve 3.748 2.940 5.107 4.690 4.596

NonBlocking 4.054 2.858 2.243 2.458 2.361

PerThread 4.000 3.095 2.455 2.644 2.372

Fields 0.999 0.998 1.003 0.999 1.000

LocalFields 0.998 1.000 0.998 0.998 0.998

Table 4.1 : Slowdown Factor for n Threads in a Tight Loop Compared to Hand-
written Logging, i7

Threads 1 2 4 8 16

Näıve 2.287 2.310 1.950 1.774 1.709

NonBlocking 2.434 2.513 2.050 1.839 1.744

PerThread 2.527 2.410 2.091 1.908 1.807

Fields 1.001 0.992 0.993 0.996 0.997

LocalFields 0.999 0.996 0.997 0.997 0.999

Table 4.2 : Slowdown Factor for n Threads in a Tight Loop Compared to Hand-
written Logging, i7 Quad
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Threads 1 2 4 8 16

Näıve
x 1.015 0.989 1.016 1.003 0.989

σM 0.000591 0.003881 0.003364 0.003974 0.003894

NonBlocking
x 1.005 1.005 1.001 1.002 1.012

σM 0.000557 0.004963 0.002743 0.002769 0.003993

PerThread
x 0.998 0.986 0.996 1.000 0.989

σM 0.001286 0.003697 0.017176 0.003689 0.005066

Fields
x 1.002 1.003 1.000 1.001 0.994

σM 0.002444 0.003693 0.003618 0.003514 0.004063

LocalFields
x 0.999 1.000 0.989 1.002 1.009

σM 0.001561 0.004053 0.003620 0.003999 0.004048

Table 4.3 : Slowdown Factor for n Threads in an Outer Loop Compared to Hand-
written Logging, i7.

Threads 1 2 4 8 16

Näıve
x 1.006 0.992 0.996 1.003 0.992

σM 0.002146 0.004578 0.002843 0.002322 0.002181

NonBlocking
x 0.999 0.993 0.996 1.000 1.007

σM 0.002267 0.004563 0.003140 0.001458 0.003250

PerThread
x 1.004 0.994 0.999 1.005 1.024

σM 0.001684 0.003112 0.004631 0.001724 0.003969

Fields
x 1.003 0.996 0.990 1.002 1.001

σM 0.001768 0.004100 0.002955 0.002186 0.003510

LocalFields
x 0.999 0.988 0.999 1.002 1.010

σM 0.001153 0.004902 0.003581 0.002395 0.004813

Table 4.4 : Slowdown Factor for n Threads in an Outer Loop Compared to Hand-
written Logging, i7 Quad
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Chapter 5

Invariant Checking

Current development platforms are not designed for concurrency, even though con-

current programs are becoming more prevalent. One of the areas that first became

overwhelmingly concurrent was the graphical user interface (GUI) of a program.

The previous chapter already discussed how the use of the Runnable interface

caused a problem for unit testing.

In AWT and Swing, Java’s GUI frameworks, the program modifies GUI compo-

nents and responds to user input by executing Runnable objects in a special thread

called event thread or event dispatch thread (EDT). To maintain a responsive user

interface, programs performing long computations use both the event thread and a

worker thread in the background; therefore, they are concurrent. This serves as an

example of how widespread concurrent programs have become.

Along with the problems of testing concurrent programs comes the task of

defining, documenting, and enforcing a threading discipline. A threading disci-

pline is defined as a set of rules that dictate which threads must acquire what sets

of locks before they may access data.

There are many commonly used examples of these threading disciplines,

and a reasonable variety is found in AWT and Swing: For example, the Javadoc

documentation states that all the methods defined first in Java’s TreeModel,

DefaultTreeModel, TreeNode, MutableTreeNode, and many other classes associ-
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ated with the model side of Swing’s tree component may only be called from the

event thread. The same applies to classes that belong to Swing’s table model, and

some methods involved in model-to-view coordinate conversion.

On the other hand, calling SwingUtilities.invokeAndWait from the event

thread is a recipe for an instantaneous deadlock, since the event thread will wait

until the specified task has been completed by the event thread – but the event

thread will never even attempt to complete it, because it was told to wait. Both

of these limitations define threading disciplines, and these examples merely came

from the Swing GUI library; applications and other libraries usually have their own

disciplines that need to be followed.

Unfortunately, these threading disciplines are often undocumented, hidden in

source code comments, or only found in a white paper about the library. Many

times, the authors of concurrent code use several of these approaches to communi-

cate the necessary circumstances for safe access, but there is no way the threading

disciplines are enforced. Disobeying a library’s threading discipline often does not

result in an informative error message, but instead goes unnoticed until much later,

when the code has grown and changed, clouding the actual cause of the problem.

This chapter specifies a light-weight language, using Java annotations with sub-

typing, that allows threading invariants to be applied to methods which require the

caller or subclass to adhere to a threading discipline. The invariants are directed

outward: They specify contracts that code using the annotated methods must up-

hold. Most of the time, the verification of adherence is done at runtime, but some

verification can be done statically at compile time.

Both the verification of complicated threading invariants at runtime, and the

limited static analysis at compile time offer a great benefit to library developers
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and users: A library developer can precisely describe the required threading in-

variants, not in comments or white papers, but as Java annotations that can be

checked automatically. The users of a library can determine whether they are vi-

olating the library’s invariants at runtime, if not even statically at compile time.

Considering that writing and using extensible, multi-threaded libraries is one of the

most challenging programming tasks, these annotations add considerable value to a

library.

The verification of a program’s conformity with the threading discipline de-

scribed by the annotations is performed by automatically inserted bytecode.

To express the invariants, I have elected to use Java annotations, a facility to

store metadata that was introduced with Java 5.0 and extended with subtyping in

the Extended Annotation Enabled javac (xajavac) [32].

Compared to the alternative approach of using comments with special format-

ting, annotations have the advantage of being part of the Java language; therefore,

their syntax is checked by the Java compiler, and their content is accessible by us-

ing the Java API or by reading the well-defined format of a Java class file. Further-

more, it is possible to restrict the places where annotations can be applied: The

annotations designed for the invariant checker can only be applied to types (classes

and interfaces), methods and constructors. An annotation facility based on com-

ments would involve much more processing to parse annotations and detect badly

placed ones.

The invariants introduced in this section are checked at the beginning of a

method, right when it is entered, except in constructors, which make a super call

first. Synchronized methods are changed to regular methods with a synchronized

block around the entire method body. This allows the invariant checks to be ex-
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1class C {

2synchronized void nonS() { /* some code */ }

3static synchronized void s() { /* some code */ }

4}

Listing 5.1: Synchronized Methods Before Transformation

1class C {

2void nonS() { synchronized(this) { /* some code */ } }

3static void s() { synchronized(C.class) { /* some code */ } }

4}

Listing 5.2: Methods With Synchronized Blocks After Transformation

ecuted before the lock is acquired: The synchronized methods in listing 5.1 are

transformed into the methods shown in listing 5.2.

5.1 Annotations and Inheritance

A method can acquire an invariant in three different ways:

1. The method itself is annotated. Listing 5.3 shows and example of this.

2. The same method in a superclass or one of the implemented interfaces has

been annotated. Once a method has been assigned an invariant, all overrid-

ing implementations will be assigned the same invariant. An example can be

found in listing 5.4.

3. The class or interface in which the method is first introduced is annotated.

The invariant will be assigned to the same method in all classes or interfaces

that extend or implement the annotated class. Examples are shown in listing

5.5. Note that a class annotation is only shorthand for annotating all meth-

ods in the class.
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1class C {

2@OnlyEventThread void someMethod () {

3// Method may only be run in the event thread

4} }

Listing 5.3: Annotated Method

1class C {

2@OnlyEventThread public void someMethod () {

3// Method may only be run in the event thread

4}

5}

6interface I {

7// Method may only be run in the event thread

8@OnlyEventThread public void otherMethod ();

9}

10class D extends C implements I {

11public void someMethod () {

12// Method may only be run in the event thread

13// D.someMethod () hasn’t been annotated , but C.someMethod (),

14// the same method in the superclass , has

15}

16public void otherMethod () {

17// Method may only be run in the event thread

18// D.otherMethod () hasn’t been annotated , but

19// I.otherMethod (), the same method in an implemented

20// interface , has

21}

22}

Listing 5.4: Method Annotated in Superclass

More formally, let A be an annotation, let m be a method, and let C, D, S be

classes or interfaces. Let m(C) be the set of methods defined (i.e. introduced or

overridden) in class C. Let a(C) be the set of annotations that are directly at-

tached to class C, i.e. that appear in front of C’s class definition, and let a(C,m)

be the set of annotations that are directly attached to method m in class C, i.e.

that appear in front of m’s method definition in the class definition of C. Then

annotations(C,m), shown in figure 5.1, is the set of annotations that are applied
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1class B { public void nothing () { /* no annotation at all */ } }

2@OnlyEventThread class C extends B {

3public void nothing () { // no annotation at all

4// even though class C is annotated , because nothing ()

5// already defined in the superclass

6}

7public void someMethod () { // May only run in event thread

8// C.someMethod () hasn’t been annotated , but the class

9// in which it was introduced has

10} }

11@OnlyEventThread interface I { // May only run in event thread

12// I.otherMethod () has not been annotated , but the interface

13// in which it was introduced has

14public void otherMethod ();

15}

16class D extends C implements I {

17public void nothing () { /* still no annotation at all */ }

18// someMethod () and otherMethod () may only run in event thread

19// they weren’t annotated itself , but the superclass or

20// interface where they were already defined , were annotated

21public void someMethod () { /* ... */ }

22public void otherMethod () { /* ... */ }

23}

Listing 5.5: Annotated Classes

to a method m in class C, either because the method was directly annotated or be-

cause the annotations were somehow inherited.

annotations(C,m) = {A : ∃S such that C <: S,A ∈ a(S,m)} ∪
{A : ∃D such that C <: D ∧

6 ∃S such that D <: S,D 6= S,m ∈ m(S),
A ∈ a(D)}

Figure 5.1 : Set of Annotations

The first subset contains all annotations attached directly to methods. Because

of the reflexive property of subtyping <:, this subset contains both annotations

from methods in superclasses and in class C itself. The second subset contains an-

notations that are attached to methods because the class in which they were intro-
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duced was annotated. More precisely, the second subset consists of all the annota-

tions that meet the following three criteria: the method exists in the class, super-

class, or an implemented interface; that class, superclass, or interface is annotated

with the annotation; and the method has not already been introduced in a class or

interface higher up.

This structure of inheritance of invariants is crucial in enforcing invariants in

subclasses. It allows library developers to design APIs that users can extend while

still ensuring that the original threading discipline is maintained.

The decision to let annotations on classes only affect methods that are first in-

troduced in that class or one of its subclasses helps localize the effect of an annota-

tion. The users of a library are free to introduce their own invariants, in addition to

the library’s invariants, without accidentally strengthening the invariants of meth-

ods that have already been defined in a library superclass or interface.

5.2 Predicate Annotations without Subtyping

After initially implementing a limited set of hard-coded annotations, I noticed that

only a small set of the desirable invariants could be expressed, particularly when

annotating the model object associated with a GUI component: For instance, it

is easy to specify that a JTable should only be accessed by the event thread once

the component has been realized, but how would a developer do the same for the

TableModel object that contains the data displayed in the table? The model object

does not have a reference to the GUI component. Predicate annotations remedy

this problem.



96

A predicate annotation is an annotation that itself is annotated by one of the

two meta-annotations @PredicateLink and @Combine. These meta-annotations

mark an annotation as predicate annotation. In the absence of subtyping for an-

notations, the meta-annotations also specify the way the predicate annotation be-

haves.

Annotations marked as @PredicateLink may only contain primitive data mem-

bers, strings, class objects, enumerations, and arrays of the types just mentioned;

they may not contain other annotations or arrays of annotations as members. An-

notations marked with @Combine, on the other hand may only contain other anno-

tations or arrays of annotations (in fact, the annotations must even be predicate

annotations, i.e. they must have either a @PredicateLink or a @Combine meta-

annotation); annotations marked with @Combine may not contain primitive data

members, strings, class objects, enumerations, or arrays of those types.

5.2.1 Predicate Link Annotations

Listing 5.6 shows the definition of the @PredicateLink meta-annotation. The

@PredicateLink meta-annotation establishes a link between the annotation it is

marking and a static method returning a boolean (the predicate method, specified

by a Class instance and a method name). This method is called, and if it returns

false, a violation has occurred. The predicate method must be in a completely

static context, which means the method cannot be in an anonymous inner class or

a non-static inner class; methods in static inner classes, however, can be used. To

be precise, it has to be possible to call the predicate method from the beginning of

every method that is affected by the annotation.
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1@Retention(RetentionPolicy.RUNTIME)

2@Target ({ ElementType.ANNOTATION_TYPE })

3public @interface PredicateLink {

4/** Class containing the predicate method.

5* @return class with the predicate method. */

6Class value();

7/** Name of the predicate method. If not

8* specified , the name "check" is assumed.

9* @return name of the predicate method. */

10String method () default "check";

11/** Whether method arguments should be passed

12* to the predicate.

13* @return true if arguments should be passed. */

14boolean arguments () default false;

15}

Listing 5.6: @PredicateLink Meta-Annotation

The method is specified using the value() and method() members of the

@PredicateLink annotation. The former specifies the class that contains the pred-

icate method. The latter is optional and specifies the method name; if no method

name is specified, "check" is assumed. The third member, arguments(), decides

whether the method arguments should be passed.

Listing 5.7 shows the annotation definition, predicate method, and usage site

of the @ThreadWithNameNotPassed annotation. The annotation specifies that it is

not permissable to pass a Thread object to the method whose Thread.getName()

method returns a certain string, for instance "Disallowed".

The example in listing 5.7 shows that the predicate method can receive data

from the annotation, in this case the name of a thread in the value() member, and

the arguments from the method, passed in the Object[] args parameter. The re-

quirements on the predicate methods and the bytecode rewriting procedure were

described in detail in my Master’s thesis [34].
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1@PredicateLink(value=Predicates.class ,

2method="checkThreadWithNameNotPassed",

3arguments=true)

4public @interface ThreadWithNameNotPassed {

5String value (); // name of thread not to pass

6}

7class Predicates {

8public static boolean checkThreadWithNameNotPassed

9(Object this0 , String value , Object [] args) {

10// this0 is bar’s this

11// value is the name of the thread not to pass

12// args contains the arguments to bar

13for(Object arg: args) {

14if (arg instanceof Thread) {

15Thread t = (Thread)args;

16if (t.getName ().equals(value)) return false;

17}

18}

19return true;

20}

21}

22class Foo {

23@ThreadWithNameNotPassed("Disallowed"

24public void bar(String dummy0 , Thread t, Object dummy1) {

25// ...

26}

27}

Listing 5.7: Predicate Annotation with a Member, Arguments Passed
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1@PredicateLink(value=Predicates.class ,

2method="checkThreadWithNameNotPassed",

3arguments=true)

4public @interface ThreadWithNameNotPassed {

5String value (); // name of thread not to pass

6}

Listing 5.8: Annotation Definition of Listing 5.7

1class Predicates {

2public static boolean checkThreadWithNameNotPassed

3(Object this0 , String value , Object [] args) {

4// this0 is bar’s this

5// value is the name of the thread not to pass

6// args contains the arguments to bar

7for(Object arg: args) {

8if (arg instanceof Thread) {

9Thread t = (Thread)args;

10if (t.getName ().equals(value)) return false;

11}

12}

13return true;

14}

15}

Listing 5.9: Predicate Method of Listing 5.7

Predicate annotations consist of three individual parts: The annotation defi-

nition, the predicate method, and the actual usage site of the annotation. While

listing 5.7 shows all three parts together, the reader should keep in mind that the

annotation definition and the predicate method are usually written by the library

developer, and the application developer only needs to work with the annotation

usage.

To show the simplicity of this scheme, the individual parts from listing 5.7 have

been separated and are shown in listings 5.8, 5.9 and 5.10.
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1class Foo {

2@ThreadWithNameNotPassed("DisallowedThread"

3public void bar(String dummy0 , Thread t, Object dummy1) {

4// ...

5}

6}

Listing 5.10: Usage Site of Listing 5.7

1@And({

2@Or({

3@NotThreadWithName("foo"),

4@NotThreadWithName("bar")}),

5@Not(@NotThreadWithGroupName("main")),

6@NotThreadWithID (5)})

7void someMethod () { /* ... */ }

Listing 5.11: Ideal, But Unachievable Usage Example

5.2.2 Combine Annotations

@Combine meta-annotations were created because users longed for the ability to

perform Boolean operations on predicate annotations to create larger, more com-

plex compound annotations. The example shown in 5.11 would have been the ideal

usage, but as discussed in section A.2 in the appendix, this cannot be achieved us-

ing Java’s annotation system. Without subtyping for annotations, the @Combine-

style annotations were the best solution I could find.

The definition of the @Combine meta-annotation can be found in listing 5.12.

The @Combine meta-annotation has two members, value() and arguments().

The former decides if the member annotations of the annotation marked by the

@Combine meta-annotation should be merged using “and”, “or”, “xor”, “not”,

or “implies”. The second member, @Combine.arguments(), determines whether
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1@Retention(RetentionPolicy.RUNTIME)

2@Target ({ ElementType.ANNOTATION_TYPE })

3public @interface Combine {

4public static enum Mode {

5AND , OR , XOR , NOT , IMPLIES;

6}

7/** Operation used to combine the member predicate

8* annotations , i.e. AND , OR, XOR , NOT , IMPLIES.

9* @return combining operation */

10Mode value () default Mode.OR;

11/** Whether method arguments should be passed

12* to the predicate.

13* @return true if arguments should be passed. */

14boolean arguments () default false;

15}

Listing 5.12: @Combine Meta-Annotation

the method arguments should be passed to the predicate methods, just like the

arguments() member of the @PredicateLink meta-annotation did.

Because @Combine-style annotations are used to create compounds of other

predicate annotations, the only members allowed in a @Combine-style annotation

are other predicate annotations or arrays of predicate annotations; primitive data,

strings, class objects, enumerations, or arrays of the aforementioned types are

not allowed. The member annotations or the elements in the member array must

also have been annotated with one of the meta-annotations @PredicateLink or

@Combine.

At the usage site, there is no difference between using a @PredicateLink-

style or a @Combine-style annotation. A @Combine-style annotation, how-

ever, does not have a designated predicate method, like the one specified by a

@PredicateLink meta-annotation. When the invariant checker encounters a us-

age site of a @Combine-style annotation, it automatically generates a predicate

method that combines the member annotations using the Boolean operation
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1@Combine(value=Combine.Mode.OR)

2public @interface NotThreadWithNameInGroup {

3NotThreadWithName name();

4NotThreadWithGroupName group ();

5}

6@NotThreadWithNameInGroup(

7name=@NotThreadWithName("fee"),

8group=@NotThreadWithGroupName("bar"))

9void someMethod () { /* ... */ }

Listing 5.13: A @Combine Annotation That Combines Member Annotations using
“or”

specified by @Combine.value(). Listing 5.13 shows and example @Combine-style

annotation that combines the predicate annotations @NotThreadWithName and

@NotThreadWithGroupName using a Boolean “or”.

More details about @Combine-style annotations were described in my Master’s

thesis [34].

5.3 Predicate Annotations with Subtyping

After completing my Master’s thesis, I examined the javac compiler to look for a

way to improve Java annotations.

The annotations are implemented as interfaces, encoded as reg-

ular Java class files. Annotation interfaces implicitly implement the

java.lang.annotation.Annotation interface, but otherwise do not support sub-

typing. Even though Java interfaces can extend multiple other interfaces, as shown

below, the extends clause is not permitted for annotations.

Furthermore, annotations may only contain primitive data, strings, class lit-

erals (Example: MyClass.class), enumerations, other annotations, and arrays of

the beforementioned as members. Specifically, most objects cannot be stored in
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an annotation (except for instances of String, Class<?> and enumeration types).

java.lang.annotation.Annotation is the implicit supertype of all annotations,

but not considered an annotation itself; therefore, it cannot be a member of an an-

notation.

The lack of subtyping leads to poor code reuse: It is impossible to write one

annotation that accepts more than one kind of annotation for a certain member;

the exact type of all members has to be determined in the annotation. Even though

the @Or and @And annotations in listing 5.11 work the same for all kinds of member

annotations, I had to define them anew for every new class of invariant annotation.

Mixing different invariant annotations was even more complicated and resulted in

the @Combine meta-annotation. This is the same problem that abstract data types

such as lists presented and that was so elegantly solved, either with subtyping or

generics: The same list class can be used for all types of data.

When I examined the Java compiler and the class files it produces for annota-

tions, I found nothing that prevented subtyping for annotations. In the compiler,

I merely had to remove a few checks to allow the extends clause; the class file for-

mat could remain completely unchanged.

xajavac allows the extends clause for annotations. Just like with interfaces,

one or more annotations may be extended. The types that are extended, how-

ever, all have to be annotations themselves. Extending classes or interfaces

that are not annotations results in an error. If no extends clause exists, then

java.lang.annotation.Annotation is implicitly made the superclass, just like

in standard Java. Since java.lang.annotation.Annotation is not an annotation

itself, it cannot be mentioned in the extends clause of an annotation.
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Allowing subtyping for annotations greatly simplified both the implementa-

tion of the invariant checker and the use of the invariants. Listing 5.14 shows that

@Combine-style meta-annotations are not necessary anymore, and that Boolean op-

erators like @And and @Or are @PredicateLink-style annotations just like any other

invariant annotation. The size of the implementation was reduced by a factor of

3, measured in terms of lines of code, and 86 pre-defined annotations could be re-

placed by just 19, mostly because Boolean operators did not have to be defined for

each invariant separately.

5.4 Results

To evaluate the efficacy and ease of use of the invariant checker and the annota-

tions, I added invariant annotations to two different versions of DrJava [31], a ver-

sion from March 26, 2004, and a version from September 2, 2006. These versions

were chosen because they marked two stable releases of DrJava. Since the DrJava

development team had recently made many changes to improve concurrent behav-

ior of the application, I expected that the older version would have more invariant

violations than the more recent version.

The process of annotating existing code was primarily guided by source code

comments and Javadoc comments present in the source code. It should be noted

that I probably missed some opportunities for annotations and only expressed a

subset of the invariants actually present in the program. I also faced some problems

building and running the 2004 version of DrJava, which was written before the final

version of Java 5.0 was released; as a result, some unit tests could not be run.
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1public @interface InvariantAnnotation { }

2
3@PredicateLink(value=Predicates.class , method="checkAnd",

4arguments=true)

5public @interface And extends InvariantAnnotation {

6public abstract InvariantAnnotation [] value();

7}

8
9@PredicateLink(value=Predicates.class , method="checkOr",

10arguments=true)

11public @interface Or extends InvariantAnnotation {

12InvariantAnnotation [] value();

13}

14
15public class Predicates {

16public static boolean checkOr(Object thisObject ,

17Object [] methodArgs ,

18InvariantAnnotation [] value) {

19for(InvariantAnnotation ia: value) {

20if (checkInvariantAnnotation(ia , thisObject , methodArgs)) {

21return true;

22}

23}

24return false;

25}

26
27public static boolean checkAnd(Object thisObject ,

28Object [] methodArgs ,

29InvariantAnnotation [] value) {

30for(InvariantAnnotation ia: value) {

31if (! checkInvariantAnnotation(ia , thisObject ,

32methodArgs)) {

33return false;

34}

35}

36return true;

37}

38}

Listing 5.14: Boolean Operations on Invariants Using Annotations with Subtyping



106

Table 5.1 shows the number of unit tests for the two versions that passed suc-

cessfully, failed, or could not be run because of problems with Java 5.0, as well as

the total number of unit tests. It is evident that many tests were added to the unit

testing suite of DrJava between the two versions.

3/26/2004 Version 9/2/2006 Version

Unit Tests Passed 610 881

Unit Test Failures 36 0

Could Not Run 90 0

Total Unit Tests 736 881

Table 5.1 : Unit Tests

Table 5.2 shows the total number of invariant checks, the number of passed and

failed checks, and the percentage of failed checks during the execution of the en-

tire test suite. While there were more check failures in the 2006 version in absolute

terms, the percentage of failed invariant checks was significantly lower in the newer

version, reflecting the development team’s perception that concurrent behavior had

improved. The number of invariant checks was lower in the 2004 version because

there were fewer comments that dealt with concurrency, which made the annotation

process for the 2004 version more difficult.

This lack of documentation is corroborated by the information in table 5.3: On

the one hand, the source base and the number of unit tests grew substantially, and

on the other hand, the term “event thread”, a concept central to Java AWT and

Swing threading disciplines, was mentioned hardly at all in the 2004 version, but

frequently in the 2006 version.
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3/26/2004 Version 9/2/2006 Version

Invariant Checks Failed 965 3796

Invariant Checks Passed 4161 30616

Total Invariant Checks 5116 34412

Percentage Failed 18.83 11.03

Table 5.2 : Invariant Checks and Violations

3/26/2004 Version 9/2/2006 Version

KLOC 107 129

Total Unit Tests 736 881

Mentions “event thread” 1 99

Table 5.3 : Other Information

It should also be noted that the 34,412 invariant checks passed in the 2006 ver-

sion did not prolong the testing process measurably. In general, as long as there

was sufficient information available to establish concurrency invariants, it was easy

to add annotations and have them checked. It was also simple to annotate only a

part of the codebase without annotating the whole codebase, and it was easy to

carry out the invariant checking in addition to running the unit testing suite. I ex-

pect that it will be much easier to annotate a program at the same time it is writ-

ten, when the programmers are actually the most aware of the required invariants.
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Chapter 6

Bytecode Rewriting

All of the pieces of the framework use bytecode rewriting to some degree: Java

source files are compiled with the regular Java compiler, if possible with debug in-

formation, and then analyzed and rewritten.

The alternative would have been to rewrite Java source code, but this approach

has several disadvantages:

• It is more difficult to parse a Java source file due to all the variations that are

allowed.

• Some of the instrumentations that can be performed do not have a corre-

sponding Java source equivalent. For example, it is impossible in Java to just

emit a MONITORENTER instruction without a matching MONITOREXIT instruc-

tion.

• Sometimes, the Java source simply is not available or it is not advisable to

recompile it, as is the case with many of the classes of the Java API.

• Performing the instrumentation on-the-fly, using a custom class loader, would

have been much more difficult if the changes were made to Java source and

not to class files. The compiler would have to be invoked at runtime from

within a class loader, which is possible but expensive, as the multi-stage Java

programming language Mint demonstrates [56].
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Another option would have been to modify the Java compiler and runtime envi-

ronment, but this was ruled out early on so the project could target as many plat-

forms as possible and therefore maximize the potential user base.

The kind of analysis and rewriting that is performed depends on the required

task. In general, class files are rewritten one at a time; the actual process has been

abstracted out using several object-oriented design patterns, namely strategy, deco-

rator and composite [13], so that each instrumentation can implement the necessary

changes as it sees fit. Very often, the instrumentation strategy cycles through all

the methods in a class and changes them.

IInstrumentationStrategy is the base interface, and all instrumentation

strategies need to implement its two methods shown in listing 6.1. instrument will

be called once per class file; done is called only once, at the end of the instrumenta-

tion, when all classes have been processed.

The isReady method is called to determine if a class file is ready to be instru-

mented. If the class file is not ready, it is placed at the end of the queue of files to

process, which allows the instrumentation strategy to change the order classes are

instrumented. The execution logging strategy in chapter 4, for example, examines

all classes that need to be logged and then constructs a table in ExecutionLog

class; the ExecutionLog class therefure must be processed last. To implement

this, the isReady method returns false for the ExecutionLog class until all other

classes have been instrumented.

Cycles in the order of dependencies expressed by the isReady method are not

allowed, and the framework throws an exception if one complete iteration through

the queue of class files does not result in a change in the queue contents.

There are several helpful classes and interfaces that allow better code reuse:
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1public interface IInstrumentationStrategy {

2public void instrument(ClassFile cf);

3public boolean isReady(ClassFile cf);

4public void done();

5}

Listing 6.1: IInstrumentationStrategy Source

1public abstract class ConditionalStrategy

2implements IInstrumentationStrategy {

3IInstrumentationStrategy _decoree;

4public ConditionalStrategy(IInstrumentationStrategy decoree) {

5_decoree = decoree;

6}

7public void instrument(ClassFile cf) {

8// ...

9if (apply(cf)) {

10// ..

11_decoree.instrument(cf);

12}

13}

14public boolean isReady(ClassFile cf) { return

15_decoree.isReady(cf);

16}

17public void done() { _decoree.done(); }

18public abstract boolean apply(ClassFile cf);

19}

Listing 6.2: ConditionalStrategy Source

CompoundStrategy bundles several IInstrumentationStrategy instances and

runs them one after the other. A ConditionalStrategy, shown in listing 6.2, also

contains another IInstrumentationStrategy, but it will only execute the strategy

if the ConditionalStrategy.apply method returns true.

Using a ConditionalStrategy, a developer can apply an instrumentation

only to class files that, for example, reside in the java.lang package. There

is also an additional interface that instrumentation strategies can implement,

IScannerStrategy, which adds another method to be implemented and whose
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1public interface IScannerStrategy extends

IInstrumentationStrategy {

2public interface IScanResult {

3public String getPropertyName ();

4}

5public List <? extends IScanResult > getScanResults ();

6}

Listing 6.3: IScannerStrategy Interface

purpose it is to return data gathered during the instrumentation. The interface’s

definition is shown in listing 6.3.

The classes implementing IScannerStratey typically cache data from the in-

strumentation of one class to the next, and possibly process it when the done

method is called. Another common use of the IScannerStrategy is storing minor

errors that should be relayed to the user but that should not entirely terminate the

instrumentation, as an exception would.

Most instrumentation strategies also take a List<String> as parameter in their

constructors: This list allows the user to pass values to the instrumentation strate-

gies and, for example, determine whether backup files should be created before a

class file is changed.

To parse, analyze and modify Java class files, I decided to use my own library

that I created as part of the work for my Master’s thesis [34], even though alter-

natives such as BCEL [2] and ASM [28] existed. It took some time to write the li-

brary, but I believe this effort was necessary to get acquainted with all parts of the

Java class file format and the intricacies of the JVM.

The framework consists of a mixture of high-level classes that employ object-

oriented design patterns like strategies, compounds and visitors, as well as low-level



112

constructs for the compact representation of instructions, methods and classes. All

features of Java 5.0 and 6.0 are fully supported by the library.

6.1 Offline and On-the-Fly Instrumentation

Regardless of which instrumentation strategy is used, instrumentation can be done

either offline, i.e. after compile time but before runtime; or at runtime using a cus-

tom class loader that rewrites the classes just as they are needed.

To instrument classes offline, a set of class files, directories, and jar files is

passed as argument to the FileInstrumentor program, together with the name

of the IInstrumentationStrategy that should be applied. The FileInstrumentor

then processes all class files that were specified and replaces the originals with in-

strumented copies. After the instrumentation, the classes can be used just as if

nothing had changed.

Offline instrumentation is faster, safer, more accurate and more general than on-

the-fly instrumentation: It is faster because caching changes is easier, and because

the JVM does nothing else besides instrumenting class files.

Performing the instrumentation offline is safer and more accurate than changing

the class files on-the-fly because the instrumentation cannot have any side effects

on computations that happen concurrently. With on-the-fly instrumentation, care

must be taken to minimize the impact the custom class loader has on the rest of

the program. If the custom class loader affected the behavior of the program being

instrumented and changed the outcome of a particular unit test, that would negate

the effort of the framework.
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Finally, several classes in the Java API are considered “protected” and cannot

be changed on-the-fly. In order to change them, the instrumentation has to be per-

formed offline. For all of these reasons, it is recommended to instrument the Java

API (usually called rt.jar on Windows and Linux, or classes.jar and ui.jar on

Mac OS X) offline and create instrumented copies to be used instead of the original

API files. To use the instrumented copies, they have to be placed at the beginning

of Java’s boot classpath using the -Xbootclasspath/p option. The framework pro-

vides GUI tools to assist the user with this.

6.2 Local and Global Instrumentation

Each instrumentation strategy, each change of the program, can be classified as ei-

ther local or global, depending on what parts of the program need to be modified

to achieve the desired effect.

The changes from chapter 5 to check whether the program has violated the

threading discipline are an example of local instrumentation. Bytecode is inserted

in one place, at the beginning of a method, but the results are observable through-

out the entire program, at every call site of the method. Converting synchronized

methods to methods with a synchronized block is another example of local instru-

mentation. A change is made in one method only, the rest of the program does not

have to be modified.

Not all changes can be made in this way, though. In order to instrument all

synchronization points of a program, for example, it is necessary to know when a

program calls the Object.wait, Object.notify, and Object.notifyAll meth-

ods. The easiest way to achieve this would be to insert the bytecode processing the
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synchronization point into these methods; in the current Java API, however, these

methods are native and therefore do not contain bytecode.

The next easiest way to be notified of every call to the methods above would

be to rename the original methods, e.g. rename the wait method in the Object

class to waitOriginal, and then put a method with the original name in its place,

a method that processes the invocation appropriately and then forwards the call to

the renamed method. That way, the changes would still be localized to the Object

class alone; all other classes could remain unchanged and would nonetheless call the

method we put in place.

This renaming approach works for some methods, but it does not help in the

case of the wait, notify, and notifyAll methods in the Object class. These

methods are native, and linking the native code to the methods requires the meth-

ods to always have the original name.

To still be notified of calls to these methods, an instrumentation strategy has

to create forwarding methods, for example Object.waitForward, that do the pro-

cessing and then call the native methods. Unfortunately, all the other classes still

call the original method; therefore, all call sites in all classes need to be changed to

invoke the added forwarding method instead. That makes this kind of instrumenta-

tion global; the changes are not localized to a single class anymore, but affect every

class that uses the changed method. Local instrumentation is preferable to global

instrumentation since it reduces the number of times code has to be rewritten.
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In chapter 2, ConcJUnit used bytecode rewriting to detect unjoined threads;

the scheduling component of Concutest in chapter 3 inserted bytecode for random

delays, which allows tests to be executed under varying schedules. In the last two

chapters, bytecode rewriting was used to log the execution of methods and to verify

that invariants were being maintained. Bytecode rewriting proved to be valuable in

all parts of the testing framework.
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Chapter 7

Conclusion

This thesis described a new framework called Concutest that can effectively apply

unit testing to concurrent programs, which are difficult to develop and debug. Test-

driven development, a practice that in the past has only been productive for pro-

grams with a single thread of control, can now be used with concurrent programs.

The Concutest framework

• improves JUnit to recognize errors in all threads, a necessary development

without which all other improvements are futile,

• places some restrictions on the programs to facilitate automatic testing,

• provides an invariant checker that reduces programmer mistakes by checking

thread disciplines,

• simplifies writing unit tests that need to log the execution of portions of code

that can only be observed using side effects, which is frequently the case in

concurrent programs, and

• re-runs the unit tests with randomized schedules to simulate the execution

under different conditions and on different machines, increasing the probabil-

ity that errors are detected.
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7.1 Future Work

The Concutest framework is an effective tool for programmers; however, it also rep-

resents an interesting platform for future research.

For example, choosing the enabled subset of instrumentation sites for delays is

still a haphazard activity. It would be worthwhile to study the interactions between

different synchronization points more closely.

Performing an effective, light-weight static analysis to determine which fields

and arrays could actually be shared across threads may minimize the time spent in

unnecessary delays.

Determining field sharing could also be done dynamically: Instead of inserting

delays, the framework could keep track of the thread that accesses a field, and only

start using delays when it becomes clear that the field is shared. Using an atomic

compareAndSet operation, I expect this to take less time in the unshared case than

an unnecessary delay.

Varying the delay durations and the probability that one is inserted at all could

be insightful. For example, it could be interesting to start with shorter, less fre-

quent delays, and increase duration and frequency every time a test passes without

errors. There also seems to be an interaction between the number of processor cores

and the lengths of the delays necessary to effectively detect errors, and it may not

be necessary to use long delays for a processor with many cores.

In spite of these research questions, the Concutest framework developed as part

of this thesis provides useful tools for concurrent programs, enabling developers to

test programs more reliably.
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The tools described in this thesis work on all three major platforms: Windows,

Linux, and Mac OS X.

All source code is open source and available at: http://www.concutest.org/ [33].

http://www.concutest.org/
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Appendix A

Suggestions for Improving Java Annotations

During my extensive work with Java annotations, I have discovered several short-

comings in the way the annotations are implemented in the Java compiler, the Java

runtime, and the Java Language Specification [43]:

• It is illegal to use the same annotation more than once per target.

• There is no subtyping for annotations.

These shortcomings are described in greater detail in the sections below. As

previously predicted [34], these issues were easy to address: The Extended Annota-

tion Enabled javac compiler (xajavac) [32] supports both repeated annotations and

annotations with subtyping.

The Java Specification Request “Annotations on Types” (JSR 308) [47] cited

my work on annotations but failed to remedy these problems, mostly because these

problems were considered out of scope for the specification request.

A.1 Repeated Annotations

In Java, it is currently illegal to attach the same annotation more than once to

a target. Allowing repeated annotations would make specifying several similar

pieces of metadata much easier. Listing A.1 shows the most intuitive way to spec-
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1@LogTheMethod("MyClass.foo")

2@LogTheMethod("MyClass.bar")

3public void testLogged () { /* ... */ }

Listing A.1: Repeated Annotations

ify that a test method should log the execution of two methods, MyClass.foo and

MyClass.bar, but the Java compiler will reject the repeated annotation.

The execution logging system provides a work-around for this problem: Listing

A.2 shows how the desired logging request from listing A.1 can be achieved using

an array of helper annotations. Specifying multiple pieces of metadata that use the

same annotation is therefore possible, but not as convenient as it could be.

As xajavac demonstrates, there is no compelling reason against allowing re-

peated annotations. To allow reflection with more than one annotation per type,

the getAnnotations(Class<T> annotationClass) method should be added to

the existing getAnnotation(Class<T> annotationClass) and getAnnotations()

methods in java.lang.reflect.AccessibleObject:

public <T extends Annotation> T

getAnnotation(Class<T> annotationClass);

public <T extends Annotation> T

getAnnotations(); // all annotations

public <T extends Annotation> T[]

getAnnotations(Class<T> annotationClass);

The semantics of the original getAnnotation should be changed to return the

first annotation if more than one exists. Allowing repeated annotations could have

made @LogTheMethod and @LogTheClass annotations much less verbose.
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1@LogTheMethod ({

2@MethodDesc("MyClass.foo"),

3@MethodDesc("MyClass.bar")

4})

5public void testLogged () { /* ... */ }

Listing A.2: Annotation Array as Alternative

1@interface Named {

2String value ();

3boolean regex() default false;

4}

5@interface NotThreadWithName extends Named { }

6@interface NotThreadWithGroupName extends Named { }

Listing A.3: Extending Annotations

A.2 Subtyping for Annotations

In Java, an annotation cannot extend another annotation, even though annotations

are handled in a very similar way as interfaces. It could often be useful to extend

one annotation and add additional elements, as listing A.3 shows.

The extends clause is not allowed in annotation declarations, even though al-

lowing it could often increase code reuse. The most unfortunate result of the lack of

subtyping for annotations is that two annotations do not have a common base class

and therefore cannot be treated abstractly. All annotations implement the interface

java.lang.annotation.Annotation, but that interface itself is not an annotation

and therefore cannot be used as member of an annotation.

If subtyping is allowed for annotations, sections 4.1.4 and 5.3 demonstrate that

it is trivial to develop concise annotations that perform the Boolean operations

“and”, “or”, and “not”.
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To allow reflection for annotations with subtyping, the runtime library should

add the getAnnotations method as described above, but also provide ways to look

for exact class matches and ignore subtypes:

// include subtypes

public <T extends Annotation> T[]

getAnnotations(Class<T> annotationClass);

// option to include/exclude subtypes

public <T extends Annotation> T[]

getAnnotations(Class<T> annotationClass, boolean includeSubtypes);

The semantics of the original getAnnotation method should probably be

changed to ignore subtypes and to return the first annotation that matches the pro-

vided class, or null if none is found.

A.3 Extended Annotation Enabled javac (xajavac)

The xajavac Extended Annotation Enabled javac compiler is available under the

Java Research License at:

http://www.cs.rice.edu/~mgricken/research/xajavac

and

http://ricken.us/research/xajavac

To use the modified compiler, download the xajavac.jar file (using the xajavac

Binaries link below) and invoke it using

java -jar xajavac.jar <arguments>

where <arguments> stands for the arguments usually passed to javac.

xajavac allows the extends clause for annotations as well as repeated annota-

tions. Just like with interfaces, one or more annotations may be extended. The

http://www.cs.rice.edu/~mgricken/research/xajavac
http://ricken.us/research/xajavac
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1AnnotationTypeDeclaration:

2@ interface Identifier AnnotationTypeBody

Listing A.4: Original Java Grammar for Annotations

1AnnotationTypeDeclaration:

2[final] @ interface Identifier [extends AnnotationTypeList]

AnnotationTypeBody

3AnnotationTypeList:

4AnnotationType { , AnnotationType}

5AnnotationType:

6Identifier

Listing A.5: Changed Grammar to Allow Subtyping for Annotations

types that are extended, however, all have to be annotations themselves. Extend-

ing classes or interfaces that are not annotations results in an error. If no extends

clause exists, then java.lang.annotation.Annotation is implicitly made the su-

perclass, just like in standard Java. Since java.lang.annotation.Annotation is

not an annotation itself, it cannot be mentioned in the extends clause of an anno-

tation.

Formally, I have changed the grammar of Java from what has been published in

the Java Language Specification, Third Edition [43] in just one place. Listing A.4

shows the original portion of the grammar, and listing A.5 shows the changes incor-

porated into xajavac.

There is a context-sensitive requirement for the AnotationType used in the

extends clause that cannot be expressed in this context-free grammar: Each

AnnotationType mentioned in an extends clause must itself be an annotation type

introduced using the AnnotationTypeDeclaration.
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Listing A.6 shows some examples of allowed and disallowed uses of subtyping

for annotations.

The Java Specification Request “Annotations on Types” (JSR 308) [47] listed

one problem when annotations allow subtyping: There may be trust issues, because

an annotation in a secure framework may be subclassed, and then a non-secure an-

notation may be used. I do not consider that a major issue: The problem with un-

trusted code exists for regular classes and frameworks as well. To ensure that an

annotation cannot be subclassed, I allowed the final modifier for annotations, just

as it is allowed for non-abstract classes. The example in listing A.7 below would

generate an error.

Considering how small the changes were, I strongly urge Oracle to incorporate

subtyping for annotations.
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1// java.lang.annotation.Annotation as implicit superclass

2@interface BaseAnnotation {

3int value();

4}

5
6// extends BaseAnnotation

7@interface SubAnnotation extends BaseAnnotation {

8String s();

9}

10
11// java.lang.annotation.Annotation as implicit superclass

12@interface AnotherAnnotation {

13Class c();

14}

15
16// java.lang.annotation.Annotation as implicit superclass

17@interface ThirdAnnotation {

18Class value();

19}

20
21// extends both SubAnnotation and AnotherAnnotation

22@interface SubSubAnnotation extends SubAnnotation ,

23AnotherAnnotation {

24}

25
26// error: Annotation is not an annotation itself

27@interface ErroneousAnnotation

28extends java.lang.annotation.Annotation {

29int value();

30}

31
32// error: value member already exists in BaseAnnotation

33// cannot be overridden

34@interface ErroneousAnnotation2 extends BaseAnnotation {

35int value();

36}

37
38// error: value member already exists in BaseAnnotation

39// cannot be overloaded based on return type

40@interface ErroneousAnnotation3 extends BaseAnnotation {

41String value ();

42}

43
44// error: value member exists in both BaseAnnotation

45// and ThirdAnnotation --> ambiguous

46@interface ErroneousAnnotation4 extends BaseAnnotation ,

47ThirdAnnotation {

48}

Listing A.6: Examples of Allowed and Disallowed Uses of Subtyping for
Annotations
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1final @interface FinalAnnotation {

2String value ();

3}

4
5// error: cannot inherit from final FinalAnnotation

6@interface SubAnnotation extends FinalAnnotation {

7int i();

8}

Listing A.7: Using final to Prevent Extending Annotations
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Appendix B

Sample Source Code

This appendix contains the source code to the examples that were used to evaluate

the effectiveness of the Concutest framework. The source is being included so as

to not repeat the problems that ConTest’s [9] and rstest’s [42] limited availability

caused.

The source code of these samples, along with all other source code for Concu-

test, is also available at: http://www.concutest.org/ [33].

B.1 Scheduling Experiment Source Code

B.1.1 Experiment 1: Race

1public class ConTestOne {

2private final static int NUM = 3;

3private static boolean first = true;

4private static final java.util.concurrent.atomic.AtomicInteger

5count = new java.util.concurrent.atomic.AtomicInteger (0);

6
7private static class Racer extends Thread {

8public void run() {

9if (first) {

10first = false;

11System.out.println("first");

12count.incrementAndGet ();

13}

14}

15}

16
17public static void main(String [] args)

18throws InterruptedException {

19Racer[] racers = new Racer[NUM];

20for (int i=0; i<NUM; i++) {

http://www.concutest.org/
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21racers[i] = new Racer();

22}

23for (Racer r : racers) {

24r.start();

25}

26for (Racer r : racers) {

27r.join();

28}

29System.out.println("final count: " + count.get());

30if (count.get() != 1) {

31System.err.println(" Bug - expected 1");

32}

33}

34}

Listing B.1: Several threads, each normally too short to be preempted, race to be
the first thread to set a flag

B.1.2 Experiment 2: Atomicity

1class Stocks implements FundConstants {

2static int[] balances = new int[noOfStocks ];

3static { for (int n=0;n<noOfStocks;n++) balances[n] = 10000; }

4static void transfer(Transfer t) {

5balances[t.fundFrom] -= t.amount;

6balances[t.fundTo] += t.amount;

7BusyWork.doStuff ();

8}

9static void checkSystem () {

10int actual = 0;

11for (int n=0;n<noOfStocks;n++) { actual += balances[n]; }

12}

13}

14class BusyWork {

15public static int[] dummy = new int [10000];

16public static int alwaysZero () {

17if (true) return 0; else return 1;

18}

19public static void doStuff () {

20java.util.Random r = new java.util.Random ();

21for (int i=0; i<dummy.length; ++i) {

22dummy[i] = r.nextInt ();

23}

24}

25}

26interface FundConstants {

27static final int noOfStocks = 3, noOfManagers = 150,

28testDuration = 20, randomTransfers = 1000,
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29initialBalance = 10000,

30totalMoneyInUniverse = noOfStocks * initialBalance;

31}

32class Transfer implements FundConstants {

33final public int fundFrom , fundTo , amount;

34public Transfer () {

35fundFrom = (int)(Math.random () * noOfStocks);

36fundTo = (int)(Math.random () * noOfStocks);

37amount = (int)(Math.random () * 1000);

38}

39}

40class FundManager implements Runnable , FundConstants {

41public void run() {

42int next = 0;

43while (true) {

44Stocks.transfer(TestFundManagers.transfers[next ++]);

45if (next == randomTransfers) next = 0;

46try { Thread.sleep (1); }

47catch (InterruptedException ie) { return; }

48}

49}

50}

Listing B.2: Several threads race to read and write shared data, but the
modifications are not atomic. This example was originally presented in a JDC Tech
Tip [48]

1public class TestFundManagers implements FundConstants {

2public static Transfer transfers [] =

3new Transfer[randomTransfers ];

4static {

5for (int n=0; n<randomTransfers; n++) {

6transfers[n] = new Transfer ();

7}

8}

9public static void main(String [] args) {

10Thread [] threads = new Thread[noOfManagers ];

11FundManager [] mgrs = new FundManager[noOfManagers ];

12for (int n=0; n<noOfManagers; n++) {

13mgrs[n] = new FundManager ();

14threads[n] = new Thread(mgrs[n]);

15threads[n]. setPriority (1 + (int)(Math.random () * 4));

16threads[n]. start();

17}

18for (int n=0; n<testDuration; n++) {

19try {

20Thread.sleep (1000);

21Stocks.checkSystem ();

22}

23catch (InterruptedException ie) {}
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24}

25System.out.println ();

26for (int n=0; n<noOfManagers; n++) {

27threads[n]. interrupt ();

28}

29for (int n=0; n<noOfManagers; n++) {

30try {

31threads[n].join();

32} catch (InterruptedException ie) {}

33}

34Stocks.checkSystem ();

35}

36}

Listing B.3: Test class for the code in listing B.2. This example was originally
presented in a JDC Tech Tip [48]

B.1.3 Experiment 3: Uninitialized Data

1public class ConTestThree {

2public static final int NUM_THREADS = 4;

3public static void main(String [] args) throws Exception {

4ChangeNotification [] cns =

5new ChangeNotification[NUM_THREADS ];

6Thread [] ts = new Thread[NUM_THREADS ];

7
8for(int i=0; i<NUM_THREADS; ++i) {

9cns[i] = new ChangeNotification ();

10ts[i] = new Thread(cns[i]);

11};

12for(Thread t: ts) { t.start(); }

13
14Thread.sleep (1000);

15
16for(ChangeNotification cn: cns) {

17Subject s = new Subject ();

18cn.changeNotification(s);

19}

20for(Thread t: ts) { t.join(); }

21}

22}

23class ChangeNotification implements Runnable {

24static boolean notified = false;

25public void run() {

26while(notified == false) {

27Thread.currentThread ().yield();

28}

29System.out.println("subject current value is:"
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30+ subject.currentValue ());

31}

32public void changeNotification(Subject subject) {

33notified = true;

34this.subject = subject;

35}

36public Subject subject;

37}

38class Subject {

39public long currentValue () {

40return System.identityHashCode(this); }

41}

Listing B.4: A main thread and several child threads have a data race on a flag,
which may cause child threads to use uninitialized data

B.1.4 Experiment 4: Chain of Threads

1import java.util .*;

2
3public class ConTestFour {

4public static final int NUM_THREADS = 10;

5
6public static final HashMap <Integer ,String > map =

7new HashMap <Integer ,String >();

8
9public static void main(String [] args) throws Exception {

10ChildThread child = new ChildThread (1);

11child.start();

12map.put(1, "x");

13child.join();

14}

15
16
17public static class ChildThread extends Thread {

18int key;

19public ChildThread(int k) {

20super ();

21key = k;

22}

23
24public void run() {

25String v = map.get(key);

26String v2 = v.toString ();

27if (key <NUM_THREADS) {

28ChildThread child = new ChildThread(key +1);

29child.start ();

30map.put(key+1, map.get(key)+"x");
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31try {

32child.join();

33}

34catch(InterruptedException ie) {

35}

36}

37}

38}

39}

Listing B.5: Threads are spawned recursively in a chain. If the child thread starts
executing immediately, it may use a hash map key that does not exist.

B.1.5 Experiment 5: Missed Notification

1public class RSTestOne {

2private static final int NUM = 3;

3private static final int ITERATIONS = 100;

4
5public static class Event {

6int count = 0;

7public Event() { }

8public Event(int c) { count = c; }

9public synchronized void wait_for_event () {

10try{ wait(); }

11catch(InterruptedException e) { }

12}

13public synchronized void signal_event (){

14count = count + 1;

15notifyAll ();

16}

17}

18
19public static class Planner extends Thread {

20Event event1 , event2;

21int count = 0;

22
23public Planner () {

24this(new Event (), new Event());

25}

26
27public Planner(Event e1 , Event e2) {

28event1 = e1;

29event2 = e2;

30count = event1.count;

31}

32
33public void run(){



140

34int iterations = 0;

35while(iterations <ITERATIONS) {

36++ iterations;

37
38if (count == event1.count) {

39event1.wait_for_event ();

40}

41count = event1.count;

42
43/* Generate plan */

44RSTestOne.sleep (1);

45
46event2.signal_event ();

47}

48}

49}

50
51public static void main(String [] args)

52throws InterruptedException {

53sleep (5000);

54Event e1 = new Event (1);

55Event e2 = new Event();

56Planner p = new Planner(e1 , e2);

57p.start ();

58
59Thread t = new Thread () {

60public void run() {

61RSTestOne.sleep (5000);

62System.exit (0);

63}

64};

65t.setDaemon(true);

66t.start ();

67
68int iterations = 0;

69while(p.isAlive () && (iterations <ITERATIONS)) {

70e1.signal_event ();

71e2.wait_for_event ();

72}

73}

74
75public static void sleep(int ms) {

76try { Thread.sleep(ms); }

77catch(InterruptedException ie) { }

78}

79}

Listing B.6: Thread in NASA’s Remote Agent may miss notifyAll and wait
forever.
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